×

zbMATH — the first resource for mathematics

A two-component matched interface and boundary (MIB) regularization for charge singularity in implicit solvation. (English) Zbl 1375.78008
Summary: We present a new matched interface and boundary (MIB) regularization method for treating charge singularity in solvated biomolecules whose electrostatics are described by the Poisson-Boltzmann (PB) equation. In a regularization method, by decomposing the potential function into two or three components, the singular component can be analytically represented by the Green’s function, while other components possess a higher regularity. Our new regularization combines the efficiency of two-component schemes with the accuracy of the three-component schemes. Based on this regularization, a new MIB finite difference algorithm is developed for solving both linear and nonlinear PB equations, where the nonlinearity is handled by using the inexact-Newton method. Compared with the existing MIB PB solver based on a three-component regularization, the present algorithm is simpler to implement by circumventing the work to solve a boundary value Poisson equation inside the molecular interface and to compute related interface jump conditions numerically. Moreover, the new MIB algorithm becomes computationally less expensive, while maintains the same second order accuracy. This is numerically verified by calculating the electrostatic potential and solvation energy on the Kirkwood sphere on which the analytical solutions are available and on a series of proteins with various sizes.

MSC:
78A30 Electro- and magnetostatics
92C05 Biophysics
78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
Software:
Apbsmem; MIBPB; APBS; TABI
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bajaj, C.; Chen, S.-C.; Rand, A., An efficient higher-order fast multipole boundary element solution for Poisson-Boltzmann-based molecular electrostatics, SIAM J. Sci. Comput., 33, 2, 826-848, (2011) · Zbl 1227.92005
[2] Baker, N.; Holst, M.; Wang, F., Adaptive multilevel finite element solution of the Poisson-Boltzmann equation II. refinement at solvent-accessible surfaces in biomolecular systems, J. Comput. Chem., 21, 15, 1343-1352, (2000)
[3] Baker, N. A., Poisson-Boltzmann methods for biomolecular electrostatics, Methods Enzymol., 383, 94-118, (2004)
[4] Baker, N. A.; Sept, D.; Joseph, S.; Holst, M. J.; McCammon, J. A., Electrostatics of nanosystems: application to microtubules and the ribosome, Proc. Natl. Acad. Sci. USA, 98, 18, 10037-10041, (2001)
[5] Beard, D. A.; Schlick, T., Modeling salt-mediated electrostatics of macromolecules: the discrete surface charge optimization algorithm and its application to the nucleosome, Biopolymers, 58, 106-115, (2001)
[6] Boschitsch, A. H.; Fenley, M. O., A new outer boundary formulation and energy corrections for the nonlinear Poisson-Boltzmann equation, J. Comput. Chem., 28, 5, 909-921, (2007)
[7] Boschitsch, A. H.; Fenley, M. O.; Zhou, H.-X., Fast boundary element method for the linear Poisson-Boltzmann equation, J. Phys. Chem. B, 106, 10, 2741-2754, (2002)
[8] Cai, Q.; Wang, J.; Zhao, H.-K.; Luo, R., On removal of charge singularity in Poisson-Boltzmann equation, J. Chem. Phys., 130, (2009)
[9] Callenberg, K. M.; Choudhary, O. P.; de Forest, G. L.; Gohara, D. W.; Baker, N. A.; Grabe, M., Apbsmem: A graphical interface for electrostatic calculations at the membrane, PLoS ONE, 5, 9, 1-12, (2010)
[10] Chen, D.; Chen, Z.; Chen, C.; Geng, W. H.; Wei, G. W., MIBPB: a software package for electrostatic analysis, J. Comput. Chem., 32, 657-670, (2011)
[11] Chen, L.; Holst, M.; Xu, J., The finite element approximation of the nonlinear Poisson-Boltzmann equation, SIAM J. Numer. Anal., 45, 2298-2320, (2007) · Zbl 1152.65478
[12] Chern, I. L.; Liu, J.-G.; Weng, W.-C., Accurate evaluation of electrostatics for macromolecules in solution, Methods Appl. Anal., 10, 2, 309-328, (2003) · Zbl 1099.92500
[13] Davis, M. E.; Madura, J. D.; Sines, J.; Luty, B. A.; Allison, S. A.; McCammon, J. A., Diffusion-controlled enzymatic reactions, Methods Enzymol., 202, 473-497, (1991)
[14] Davis, M. E.; McCammon, J. A., Electrostatics in biomolecular structure and dynamics, Chem. Rev., 94, 509-521, (1990)
[15] Deng, W.; Zhufu, X.; Xu, J.; Zhao, S., A new discontinuous Galerkin method for the nonlinear Poisson-Boltzmann equation, Appl. Math. Lett., 257, 1000-1021, (2015)
[16] Feig, M.; Brooks, C. L., Recent advances in the development and application of implicit solvent models in biomolecule simulations, Curr. Opin. Struct. Biol., 14, 217-224, (2004)
[17] Fogolari, F.; Brigo, A.; Molinari, H., The Poisson-Boltzmann equation for biomolecular electrostatics: a tool for structural biology, J. Mol. Recognit., 15, 6, 377-392, (2002)
[18] Geng, W., A boundary integral Poisson-Boltzmann solvers package for solvated bimolecular simulations, Mol. Based Math. Biol., 3, 43-58, (2015) · Zbl 1347.92005
[19] Geng, W.; Krasny, R., A treecode-accelerated boundary integral Poisson-Boltzmann solver for electrostatics of solvated biomolecules, J. Comput. Phys., 247, 0, 62-78, (2013) · Zbl 1349.78084
[20] Geng, W.; Wei, G. W., Multiscale molecular dynamics using the matched interface and boundary method, J. Comput. Phys., 230, 2, 435-457, (2011) · Zbl 1246.82028
[21] Geng, W.; Yu, S.; Wei, G. W., Treatment of charge singularities in implicit solvent models, J. Chem. Phys., 127, (2007)
[22] Geng, W.; Zhao, S., Fully implicit ADI schemes for solving nonlinear Poisson-Boltzmann equation, Mol. Based Math. Biol., 1, 109-123, (2013) · Zbl 1276.65063
[23] Gilson, M. K.; Davis, M. E.; Luty, B. A.; McCammon, J. A., Computation of electrostatic forces on solvated molecules using the Poisson-Boltzmann equation, J. Phys. Chem., 97, 14, 3591-3600, (1993)
[24] Greengard, L.; Gueyffier, D.; Martinsson, P.-G.; Rokhlin, V., Fast direct solvers for integral equations in complex three-dimensional domains, Acta Numer., 18, 243-275, (2009) · Zbl 1176.65141
[25] Holst, M.; McCammon, J.; Yu, Z.; Zhou, Y.; Zhu, Y., Adaptive finite element modeling techniques for the Poisson-Boltzmann equation, Commun. Comput. Phys., 11, 179-214, (2012) · Zbl 1373.82077
[26] Holst, M. J., The Poisson-Boltzmann equation: analysis and multilevel numerical solution, (1994), UIUC, PhD thesis
[27] Holst, M. J.; Saied, F., Numerical solution of the nonlinear Poisson-Boltzmann equation: developing more robust and efficient methods, J. Comput. Chem., 16, 3, 337-364, (1995)
[28] Honig, B.; Nicholls, A., Classical electrostatics in biology and chemistry, Science, 268, 5214, 1144-1149, (1995)
[29] Im, W.; Beglov, D.; Roux, B., Continuum solvation model: electrostatic forces from numerical solutions to the Poisson-Boltzmann equation, Comput. Phys. Commun., 111, 1-3, 59-75, (1998) · Zbl 0935.78019
[30] Juffer, A. E.B.; van Keulen, B.; van der Ploeg, A.; Berendsen, H., The electric potential of a macromolecule in a solvent: a fundamental approach, J. Comput. Phys., 97, 144-171, (1991) · Zbl 0743.65094
[31] Kirkwood, J. G., Theory of solution of molecules containing widely separated charges with special application to zwitterions, J. Comput. Phys., 7, 351-361, (1934) · Zbl 0009.27504
[32] Klapper, I.; Hagstrom, R.; Fine, R.; Sharp, K.; Honig, B., Focussing of electric fields in the active site of cu-zn superoxide dismutase: effects of ionic strength and amino acid modification, Proteins, 1, 47-59, (1986)
[33] Leeper, T. C.; Athanassiou, Z.; Dias, R. L.A.; Robinson, J. A.; Varani, G., TAR RNA recognition by a cyclic peptidomimetic of tat protein, Biochemistry, 44, 37, 12362-12372, (2005), PMID: 16156649
[34] Liang, J.; Subranmaniam, S., Computation of molecular electrostatics with boundary element methods, Biophys. J., 73, 1830-1841, (1997)
[35] Lu, B.; Cheng, X.; McCammon, J. A., “new-version-fast-multipole-method” accelerated electrostatic calculations in biomolecular systems, J. Comput. Phys., 226, 2, 1348-1366, (2007) · Zbl 1121.92007
[36] Luo, R.; David, L.; Gilson, M. K., Accelerated Poisson-Boltzmann calculations for static and dynamic systems, J. Comput. Chem., 23, 13, 1244-1253, (2002)
[37] MacKerell, A. D.; Bashford, D.; Bellott, M.; Dunbrack, R. L.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T.K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher, W. E.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.; Wiórkiewicz-Kuczera, J.; Yin, D.; Karplus, M., All-atom empirical potential for molecular modeling and dynamics studies of proteins, J. Phys. Chem. B, 102, 18, 3586-3616, (1998), PMID: 24889800
[38] Mu, L.; Wang, J.; Wei, G.; Ye, X.; Zhao, S., Weak Galerkin methods for second order elliptic interface problems, J. Comput. Phys., 250, 106-125, (2013) · Zbl 1349.65472
[39] Mu, L.; Wang, J.; Ye, X.; Zhao, S., A new weak Galerkin finite element method for elliptic interface problems, J. Comput. Phys., 325, 157-173, (2016) · Zbl 1380.65383
[40] Mukherjee, S.; Zheng, H.; Derebe, M. G.; Callenberg, K. M.; Partch, C. L.; Rollins, D.; Propheter, D. C.; Rizo, J.; Grabe, M.; Jiang, Q.-X.; Hooper, L. V., Antibacterial membrane attack by a pore-forming intestinal C-type lectin, Nature, 505, 7481, 103-107, (2014)
[41] Nguyen, D. D.; Wang, B.; Wei, G.-W., Accurate, robust and reliable calculations of Poisson-Boltzmann binding energies, J. Comput. Chem., 38, 13, 941-948, (2017)
[42] Roux, B.; Simonson, T., Implicit solvent models, Biophys. Chem., 78, 1-2, 1-20, (1999)
[43] Sanner, M. F.; Olson, A. J.; Spehner, J. C., Reduced surface: an efficient way to compute molecular surfaces, Biopolymers, 38, 305-320, (1996)
[44] Sharp, K. A.; Honig, B., Calculating total electrostatic energies with the nonlinear Poisson-Boltzmann equation, J. Phys. Chem., 94, 7684-7692, (1990)
[45] Xie, D., New solution decomposition and minimization schemes for Poisson-Boltzmann equation in calculation of biomolecular electrostatics, J. Comput. Phys., 275, 294-309, (2014) · Zbl 1349.78077
[46] Yu, S.; Geng, W.; Wei, G. W., Treatment of geometric singularities in implicit solvent models, J. Chem. Phys., 126, (2007)
[47] Yu, S. N.; Wei, G. W., Three-dimensional matched interface and boundary (MIB) method for treating geometric singularities, J. Comput. Phys., 227, 602-632, (2007) · Zbl 1128.65103
[48] Zhang, B.; Lu, B.; Cheng, X.; Huang, J.; Pitsianis, N. P.; Sun, X.; McCammon, J. A., Mathematical and numerical aspects of the adaptive fast multipole Poisson-Boltzmann solver, Commun. Comput. Phys., 13, 1, 107-128, (2013) · Zbl 1373.78002
[49] Zhang, Z.; Witham, S.; Alexov, E., On the role of electrostatics in protein-protein interactions, Phys. Biol., 8, 3, (2011)
[50] Zhao, S.; Wei, G. W., High-order FDTD methods via derivative matching for Maxwell’s equations with material interfaces, J. Comput. Phys., 200, 1, 60-103, (2004) · Zbl 1050.78018
[51] Zhou, Y. C.; Wei, G. W., On the fictitious-domain and interpolation formulations of the matched interface and boundary (MIB) method, J. Comput. Phys., 219, 1, 228-246, (2006) · Zbl 1105.65108
[52] Zhou, Y. C.; Zhao, S.; Feig, M.; Wei, G. W., High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources, J. Comput. Phys., 213, 1, 1-30, (2006) · Zbl 1089.65117
[53] Zhou, Z.; Payne, P.; Vasquez, M.; Kuhn, N.; Levitt, M., Finite-difference solution of the Poisson-Boltzmann equation: complete elimination of self-energy, J. Comput. Chem., 17, 1344-1351, (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.