UG 4: a novel flexible software system for simulating PDE based models on high performance computers. (English) Zbl 1375.35003

Summary: In this paper we describe the concept of the renewed software package UG, that is used as a flexible simulation framework for the solution of partial differential equations. A general overview of the concepts of the new implementation is given: The modularization of the software package into several libraries libGrid, libAlgebra, libDiscretization and pcl is described and all major modules are discussed in detail. User backends through scripting and visual editing are briefly considered and examples show the new features of the current implementation.


35-04 Software, source code, etc. for problems pertaining to partial differential equations
68W30 Symbolic computation and algebraic computation
Full Text: DOI


[1] http://www.lua.org
[2] Bank, R.: Pltmg: a software package for solving elliptic partial differential equations-user’s guide 10.0 (2007)
[3] Bank, R; Rose, D, Some error estimates for the box method, SIAM J. Numer. Anal., 24, 777-787, (1987) · Zbl 0634.65105
[4] Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., der Vorst, H.V.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd edn. SIAM, Philadelphia (1994) · Zbl 0814.65030
[5] Bastian, P; Birken, K; Johannsen, K; Lang, S; Neuss, N; Rentz-Reichert, H; Wieners, C, UG-A flexible software toolbox for solving partial differential equations, Comput. Vis. Sci., 1, 27-40, (1997) · Zbl 0970.65129
[6] Bastian, P., Birken, K., Johannsen, K., Lang, S., Reichenberger, V., Wieners, C., Wittum, G., Wrobel, C.: Parallel solution of partial differential equations with adaptive multigrid methods on unstructured grids. In: High performance computing in science and engineering, pp. 506-519. Jäger, W. and Krause, E. (2000). · Zbl 0945.65139
[7] Bastian, P; Blatt, M; Dedner, A; Engwer, C; Klöfkorn, R; Ohlberger, M; Sander, O, A generic grid interface for parallel and adaptive scientific computing. part I: abstract framework., Computing, 82, 103-119, (2008) · Zbl 1151.65089
[8] Bastian, P., Wittum, G.: Robustness and adaptivity: The ug concept. In: Hemker, P., Wesseling, P. (eds.) Multigrid Methods IV, Proceedings of the fourth European multigrid conference, Amsterdam, 1993, pp. 1-17. Birkhäuser, Basel (1994) · Zbl 0808.65126
[9] Birken, K.: Dynamic Distributed Data in a Parallel Programming Environment, DDD, Reference Manual. Rechenzentrum Univ, Stuttgart (1994)
[10] Ciarlet, P., Lions, J.: Finite Element Methods (part 1). North-Holland, Amsterdam (1991) · Zbl 0712.65091
[11] Farhat, C; Lesoinne, M; Pierson, K, A scalable dual-primal domain decomposition method, Numer. Linear Algebra Appl., 7, 687-714, (2000) · Zbl 1051.65119
[12] Frolkovic, P.: Finite volume discretizations of density driven flows in porous media. Vilsmeier R. Benkhaldoun F., editor, Finite volumes for complex applications pp. 433-440 (1996). · Zbl 1207.65128
[13] Frolkovic, P., Logashenko, D., Wittum, G.: Flux-based Level Set Method for Two-phase Flow. Finite Volumes for Complex Applications. ISTE and Wiley, London (2008) · Zbl 1374.76166
[14] Frolkovic, P; Mikula, K, High-resolution flux-based level set method, SIAM J. Sci. Comput., 29, 579-597, (2008) · Zbl 1141.76041
[15] Grillo, A; Lampe, M; Wittum, G, Three-dimensional simulation of the thermohaline-driven buoyancy of a brine parcel, Comput. Vis. Sci., 13, 287-297, (2010) · Zbl 1216.76066
[16] Gropp, W., Lusk, E., Skjellum, A.: Using MPI: portable parallel programming with the message-passing interface, vol. 1. MIT press (1999). · Zbl 0875.68206
[17] Hauser, A; Wittum, G, Parallel large eddy simulation with UG, High Perform. Comput. Sci. Eng., 06, 269-278, (2007) · Zbl 1391.76222
[18] Heroux, M., Bartlett, R., Howle, V., Hoekstra, R., Hu, J., Kolda, T., Lehoucq, R., Long, K., Pawlowski, R., Phipps, E., et al.: An overview of the trilinos project. ACM Trans. Math. Softw. (TOMS) 31(3), 397-423 (2005) · Zbl 1136.65354
[19] Hestenes, M; Stiefel, E, Methods of conjugate gradients for solving linear systems, J. Res. Natl. Bur. Stand., 49, 409-436, (1952) · Zbl 0048.09901
[20] Hoffer: Vrl, in preparation. Computing and visualization in science (2011) · Zbl 0968.65104
[21] Klawonn, A., Widlund, O.B.: Dual-primal feti methods for linear elasticity. Commun. Pure Appl. Math. 59(11), 1523-1572 (2006) · Zbl 1110.74053
[22] Lang, S; Wittum, G, Large-scale density-driven flow simulations using parallel unstructured grid adaptation and local multigrid methods, Concurr. Comput. Pract. Exper., 17, 1415-1440, (2005)
[23] Leijnse, A.: Three-dimensional modeling of coupled flow and transport in porous media, PhD thesis. University of Notre Dame, Indiana (1992).
[24] Muha, I., Naegel, A., Stichel, S., Grillo, A., Heisig, M., Wittum, G.: Effective diffusivity in membranes with tetrakaidekahedral cells and implications for the permeability of human stratum corneum. J. Membr. Sci. (2010) · Zbl 0968.65104
[25] Naegel, A; Falgout, RD; Wittum, G, Filtering algebraic multigrid and adaptive strategies, Comput. Vis. Sci., 11, 159-167, (2008)
[26] Nagele, S; Wittum, G, Large-eddy simulation and multigrid methods, Electron. Trans. Numer. Anal., 15, 152-164, (2003) · Zbl 1201.76093
[27] Nägele, S; Wittum, G, On the influence of different stabilisation methods for the incompressible Navier-Stokes equations, J. Comput. Phys., 224, 100-116, (2007) · Zbl 1117.76040
[28] Reiter, S., Vogel, A., Heppner, I., Rupp, M., Wittum, G.: A massively parallel geometric multigrid solver on hierarchically distributed grids. Comput. Vis. Sci. (2012, submitted) · Zbl 1380.65463
[29] Ruge, J.W., Stüben, K.: Multgrid Methods, Frontiers in Applied Mathematics, vol. 3, chap. Algebraic multigrid (AMG), pp. 73-130. SIAM, Philadelphia, PA (1987) · Zbl 0968.65104
[30] Schmidt, A., Siebert, K.: Design of Adaptive Finite Element Software: The Finite Element Toolbox ALBERTA. Springer, Berlin (2005) · Zbl 1068.65138
[31] Stüben, K.: A review of algebraic multigrid. Journal of Computational and Applied Mathematics 128(1-2), 281-309 (2001)
[32] Toselli, A., Widlund, O.: Domain Decomposition Methods: Algorithms and Theory. Springer, Berlin (2005) · Zbl 1069.65138
[33] Vogel, A; Xu, J; Wittum, G, A generalization of the vertex-centered finite volume scheme to arbitrary high order, Comput. Vis. Sci., 13, 221-228, (2010) · Zbl 1207.65128
[34] Vorst, H, Bi-cgstab: a fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13, 631, (1992) · Zbl 0761.65023
[35] Voss, C; Souza, W, Variable density flow and solute transport simulation of regional aquifers containing a narrow freshwater-saltwater transition zone, Water Resour. Res., 23, 1851-1866, (1987)
[36] Wagner, C, On the algebraic construction of multilevel transfer operators, Computing, 65, 73-95, (2000) · Zbl 0968.65104
[37] Wieners, C.: M++. http://www.mathematik.uni-karlsruhe.de/wieners · Zbl 1151.65089
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.