zbMATH — the first resource for mathematics

SpECTRE: A task-based discontinuous Galerkin code for relativistic astrophysics. (English) Zbl 1380.65274
Summary: We introduce a new relativistic astrophysics code, SpECTRE, that combines a discontinuous Galerkin method with a task-based parallelism model. SpECTRE’s goal is to achieve more accurate solutions for challenging relativistic astrophysics problems such as core-collapse supernovae and binary neutron star mergers. The robustness of the discontinuous Galerkin method allows for the use of high-resolution shock capturing methods in regions where (relativistic) shocks are found, while exploiting high-order accuracy in smooth regions. A task-based parallelism model allows efficient use of the largest supercomputers for problems with a heterogeneous workload over disparate spatial and temporal scales. We argue that the locality and algorithmic structure of discontinuous Galerkin methods will exhibit good scalability within a task-based parallelism framework. We demonstrate the code on a wide variety of challenging benchmark problems in (non)-relativistic (magneto)-hydrodynamics. We demonstrate the code’s scalability including its strong scaling on the NCSA Blue Waters supercomputer up to the machine’s full capacity of \(22,380\) nodes using \(671,400\) threads.

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76W05 Magnetohydrodynamics and electrohydrodynamics
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
Full Text: DOI
[1] Eichler, D.; Livio, M.; Piran, T.; Schramm, D. N., Nucleosynthesis, neutrino bursts and gamma-rays from coalescing neutron stars, Nature, 340, 126, (1989)
[2] Narayan, R.; Paczynski, B.; Piran, T., Gamma-ray bursts as the death throes of massive binary stars, Astrophys. J. Lett., 395, (1992)
[3] Mochkovitch, R.; Hernanz, M.; Isern, J.; Martin, X., Gamma-ray bursts as collimated jets from neutron star/black hole mergers, Nature, 361, 236, (1993)
[4] Janka, H.-T., Explosion mechanisms of core-collapse supernovae, Annu. Rev. Nucl. Part. Sci., 62, 407, (2012)
[5] Burrows, A., Colloquium: perspectives on core-collapse supernova theory, Rev. Mod. Phys., 85, 245, (2013)
[6] Ott, C. D., Massive computation for understanding core-collapse supernova explosions, Comput. Sci. Eng., 18, 5, 78, (2016)
[7] Fermi gamma-ray telescope
[9] Fryxell, B.; Olson, K.; Ricker, P.; Timmes, F.; Zingale, M., FLASH: an adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes, Astrophys. J. Suppl. Ser., 131, 273, (2000)
[10] Bryan, G. L.; Norman, M. L.; O’Shea, B. W.; Abel, T.; Wise, J. H.; Turk, M. J.; Reynolds, D. R.; Collins, D. C.; Wang, P.; Skillman, S. W.; Smith, B.; Harkness, R. P.; Bordner, J.; Kim, J.-h.; Kuhlen, M.; Xu, H.; Goldbaum, N.; Hummels, C.; Kritsuk, A. G.; Tasker, E.; Skory, S.; Simpson, C. M.; Hahn, O.; Oishi, J. S.; So, G. C.; Zhao, F.; Cen, R.; Li, Y., ENZO: an adaptive mesh refinement code for astrophysics, Astrophys. J. Suppl. Ser., 211, 19, (2014)
[11] Mignone, A.; Zanni, C.; Tzeferacos, P.; van Straalen, B.; Colella, P.; Bodo, G., The PLUTO code for adaptive mesh computations in astrophysical fluid dynamics, Astrophys. J. Suppl. Ser., 198, 7, (2012)
[12] Almgren, A. S.; Beckner, V. E.; Bell, J. B.; Day, M. S.; Howell, L. H.; Joggerst, C. C.; Lijewski, M. J.; Nonaka, A.; Singer, M.; Zingale, M., CASTRO: a new compressible astrophysical solver, I: hydrodynamics and self-gravity, Astrophys. J., 715, 1221, (2010)
[13] Löffler, F.; Faber, J.; Bentivegna, E.; Bode, T.; Diener, P.; Haas, R.; Hinder, I.; Mundim, B. C.; Ott, C. D.; Schnetter, E.; Allen, G.; Campanelli, M.; Laguna, P., The Einstein toolkit: a community computational infrastructure for relativistic astrophysics, Class. Quantum Gravity, 29, 11, 115001, (2012) · Zbl 1247.83003
[15] Woodward, P. R.; Jayaraj, J.; Lin, P.-H.; Knox, M.; Hammond, S. D.; Greensky, J.; Anderson, S. E., Scaling the multifluid PPM code on blue waters and intel MIC, (2013 Extreme Scaling Workshop, xsw 2013, (2013), IEEE), 64-72
[16] Reed, W.; Hill, T., Triangular mesh methods for the neutron transport equation, (Conference: National Topical Meeting on Mathematical Models and Computational Techniques for Analysis of Nuclear Systems, Ann Arbor, Michigan, USA, 8 Apr. 1973, (1973)), (1973), LA-UR-73-479, CONF-730414-2
[17] Hesthaven, J.; Warburton, T., Nodal discontinuous Galerkin methods: algorithms, analysis, and applications, (2008), Springer Berlin, New York · Zbl 1134.65068
[18] Cockburn, B., Devising discontinuous Galerkin methods for non-linear hyperbolic conservation laws, J. Comput. Appl. Math., 128, 187, (2001) · Zbl 0974.65092
[19] Cockburn, B.; Shu, C.-W., The Runge-Kutta discontinuous Galerkin method for conservation laws, V: vultidimensional systems, J. Comput. Phys., 141, 199, (1998)
[20] Cockburn, B., An introduction to the discontinuous Galerkin method for convection-dominated problems, (Advanced Numerical Approximation of Nonlinear Hyperbolic Equations: Lectures Given at the 2nd Session of the Centro Internazionale Matematico Estivo (C.I.M.E.) Held in Cetraro, Italy, June 23-28, 1997, Lecture Notes in Physics, (1998), Springer Berlin, New York), 150-268
[21] Cockburn, B.; Karniadakis, G. E.; Shu, C.-W., The development of discontinuous Galerkin methods, (Cockburn, B.; Karniadakis, G. E.; Shu, C.-W., Discontinuous Galerkin Methods: Theory, Computation and Applications, Lecture Notes in Computational Science and Engineering, (2000), Springer Berlin, New York), 3-50 · Zbl 0989.76045
[22] Zhang, X.; Shu, C.-W., On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes, J. Comput. Phys., 229, 23, 8918-8934, (2010) · Zbl 1282.76128
[23] Balsara, D. S.; Kim, J., A subluminal relativistic magnetohydrodynamics scheme with ADER-WENO predictor and multidimensional Riemann solver-based corrector, J. Comput. Phys., 312, 357-384, (2016) · Zbl 1351.76157
[24] Balsara, D. S., Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics, J. Comput. Phys., 231, 22, 7504-7517, (2012)
[25] Muhlberger, C. D.; Nouri, F. H.; Duez, M. D.; Foucart, F.; Kidder, L. E.; Ott, C. D.; Scheel, M. A.; Szilágyi, B.; Teukolsky, S. A., Magnetic effects on the low-\(T / | W |\) instability in differentially rotating neutron stars, Phys. Rev. D, 90, 10, (2014)
[26] Field, S. E.; Hesthaven, J. S.; Lau, S. R.; Mroue, A. H., Discontinuous Galerkin method for the spherically reduced BSSN system with second-order operators, Phys. Rev. D, 82, (2010)
[27] Brown, J. D.; Diener, P.; Field, S. E.; Hesthaven, J. S.; Herrmann, F.; Mroué, A. H.; Sarbach, O.; Schnetter, E.; Tiglio, M.; Wagman, M., Numerical simulations with a first-order BSSN formulation of Einstein’s field equations, Phys. Rev. D, 85, (2012)
[28] Field, S. E.; Hesthaven, J. S.; Lau, S. R., Discontinuous Galerkin method for computing gravitational waveforms from extreme mass ratio binaries, Class. Quantum Gravity, 26, 165010, (2009) · Zbl 1173.83010
[29] Zumbusch, G., Finite element, discontinuous Galerkin, and finite difference evolution schemes in spacetime, Class. Quantum Gravity, 26, 175011, (2009) · Zbl 1176.83005
[30] Radice, D.; Rezzolla, L., Discontinuous Galerkin methods for general-relativistic hydrodynamics: formulation and application to spherically symmetric spacetimes, Phys. Rev. D, 84, (2011)
[31] Mocz, P.; Vogelsberger, M.; Sijacki, D.; Pakmor, R.; Hernquist, L., A discontinuous Galerkin method for solving the fluid and magnetohydrodynamic equations in astrophysical simulations, Mon. Not. R. Astron. Soc. Lett., 437, 397-414, (2014)
[32] Zanotti, O.; Dumbser, M.; Hidalgo, A.; Balsara, D., An ADER-WENO finite volume AMR code for astrophysics, (Pogorelov, N. V.; Audit, E.; Zank, G. P., 8th International Conference of Numerical Modeling of Space Plasma Flows, ASTRONUM 2013, Astronomical Society of the Pacific Conference Series, vol. 488, (2014)), 285-290
[33] Endeve, E.; Hauck, C. D.; Xing, Y.; Mezzacappa, A., Bound-preserving discontinuous Galerkin methods for conservative phase space advection in curvilinear coordinates, J. Comput. Phys., 287, 151-183, (2015) · Zbl 1354.65190
[34] Schaal, K.; Bauer, A.; Chandrashekar, P.; Pakmor, R.; Klingenberg, C.; Springel, V., Astrophysical hydrodynamics with a high-order discontinuous Galerkin scheme and adaptive mesh refinement, Mon. Not. R. Astron. Soc. Lett., 453, 4278, (2015)
[35] Teukolsky, S. A., Formulation of discontinuous Galerkin methods for relativistic astrophysics, J. Comput. Phys., 312, 333, (2016) · Zbl 1352.65374
[36] Bugner, M.; Dietrich, T.; Bernuzzi, S.; Weyhausen, A.; Brügmann, B., Solving 3D relativistic hydrodynamical problems with weighted essentially nonoscillatory discontinuous Galerkin methods, Phys. Rev. D, 94, 8, (2016)
[37] Zanotti, O.; Fambri, F.; Dumbser, M., Solving the relativistic magnetohydrodynamics equations with ADER discontinuous Galerkin methods, a posteriori subcell limiting and adaptive mesh refinement, Mon. Not. R. Astron. Soc., 452, 3, 3010-3029, (2015)
[38] Miller, J. M.; Schnetter, E., An operator-based local discontinuous Galerkin method compatible with the BSSN formulation of the Einstein equations, Phys. Rev. D, (2017), in press · Zbl 1354.83005
[39] Schaller, M.; Gonnet, P.; Chalk, A. B.G.; Draper, P. W., SWIFT: using task-based parallelism, fully asynchronous communication, and graph partition-based domain decomposition for strong scaling on more than 100,000 cores, (Proceedings of the Platform for Advanced Scientific Computing Conference, Lausanne, Switzerland, 2016, (2016)), 2:1-2:10
[40] Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kalé, L.; Schulten, K., Scalable molecular dynamics with NAMD, J. Comput. Chem., 26, 1781, (2005)
[42] Jetley, P.; Gioachin, F.; Mendes, C.; Kale, L. V.; Quinn, T., Massively parallel cosmological simulations with changa, (Parallel and Distributed Processing: IEEE International Symposium on Parallel & Distributed Processing, IPDPS 2008, (2008)), 1-12
[44] Berzins, M.; Luitjens, J.; Meng, Q.; Harman, T.; Wight, C. A.; Peterson, J. R., Uintah: a scalable framework for hazard analysis, (Proceedings of the 2010 TeraGrid Conference, TG ’10, (2010), ACM New York, NY, USA), 3:1-3:8
[45] Martyna, G.; Bohm, E.; Venkataraman, R.; Arya, A.; Kalé, L. V.; Bhatele, A., Openatom: ab initio molecular dynamics for petascale platforms, (2012), Lawrence Livermore National Laboratory (LLNL) Livermore, CA, Tech. Rep. LLNL-BOOK-608553
[47] Kalé, L. V.; Krishnan, S., CHARM++: a portable concurrent object oriented system based on C++, (Proceedings of the Eighth Annual Conference on Object-Oriented Programming Systems, Languages, and Applications, OOPSLA ’93, (1993), ACM New York, NY, USA), 91-108
[48] Shu, W.; Kalé, L. V., Chare kernel - a runtime support system for parallel computations, J. Parallel Distrib. Comput., 11, 198, (1991)
[49] Kalé, L. V.; Bhatele, A., Parallel science and engineering applications: the charm++ approach, (2016), CRC Press Boca Raton
[50] Baumgarte, T. W.; Shapiro, S. L., Numerical relativity: solving Einstein’s equations on the computer, (2010), Cambridge University Press New York · Zbl 1198.83001
[51] Rezzolla, L.; Zanotti, O., Relativistic hydrodynamics, (2013), Oxford University Press New York · Zbl 1297.76002
[52] Font, J. A., Numerical hydrodynamics and magnetohydrodynamics in general relativity, Living Rev. Relativ., 11, 7, (2008) · Zbl 1151.83006
[53] Galeazzi, F.; Kastaun, W.; Rezzolla, L.; Font, J. A., Implementation of a simplified approach to radiative transfer in general relativity, Phys. Rev. D, 88, (2013)
[54] Dedner, A.; Kemm, F.; Kröner, D.; Munz, C.-D.; Schnitzer, T.; Wesenberg, M., Hyperbolic divergence cleaning for the MHD equations, J. Comput. Phys., 175, 2, 645, (2002) · Zbl 1059.76040
[55] Palenzuela, C.; Lehner, L.; Reula, O.; Rezzolla, L., Beyond ideal MHD: towards a more realistic modelling of relativistic astrophysical plasmas, Mon. Not. R. Astron. Soc. Lett., 394, 1727, (2009)
[56] Penner, A. J., General relativistic magnetohydrodynamic Bondi-Hoyle accretion, Mon. Not. R. Astron. Soc. Lett., 414, 1467, (2011)
[57] Mösta, P.; Mundim, B. C.; Faber, J. A.; Haas, R.; Noble, S. C.; Bode, T.; Löffler, F.; Ott, C. D.; Reisswig, C.; Schnetter, E., Grhydro: a new open-source general-relativistic magnetohydrodynamics code for the Einstein toolkit, Class. Quantum Gravity, 31, (2014) · Zbl 1287.83004
[58] Newman, W. I.; Hamlin, N. D., Primitive variable determination in conservative relativistic magnetohydrodynamic simulations, SIAM J. Sci. Comput., 36, 4, (2014) · Zbl 1303.83002
[59] Kopriva, D. A., Implementing spectral methods for partial differential equations: algorithms for scientists and engineers, (2009), Springer Berlin, New York · Zbl 1172.65001
[60] Kulikovskii, A. G.; Pogorelov, N. V.; Semenov, A. Y., Mathematical aspects of numerical solution of hyperbolic systems, (2000), CRC Press Boca Raton · Zbl 0965.35001
[61] Alcubierre, M., Introduction to \(3 + 1\) numerical relativity, (2008), Oxford University Press New York · Zbl 1140.83002
[62] Gammie, C. F.; McKinney, J. C.; Tóth, G., HARM: a numerical scheme for general relativistic magnetohydrodynamics, Astrophys. J., 589, 444, (2003)
[63] Del Zanna, L.; Zanotti, O.; Bucciantini, N.; Londrillo, P., ECHO: a Eulerian conservative high-order scheme for general relativistic magnetohydrodynamics and magnetodynamics, Astron. Astrophys., 473, 11, (2007)
[64] Harten, A.; Lax, P. D.; van Leer, B., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., 25, 35, (1983) · Zbl 0565.65051
[65] Toro, E. F., Riemann solvers and numerical methods for fluid dynamics: A practical introduction, (2013), Springer Berlin, New York
[66] Davis, S. F., Simplified second-order Godunov-type methods, SIAM J. Sci. Stat. Comput., 9, 445, (1988) · Zbl 0645.65050
[67] Roe, P., Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43, 357, (1981) · Zbl 0474.65066
[68] Roe, P. L.; Pike, J., Efficient construction and utilisation of approximate Riemann solutions, (Proc. of the Sixth Int’l Symposium on Computing Methods in Applied Sciences and Engineering, VI, (1985), North-Holland Publishing Co. Amsterdam), 499-518
[69] Glaister, P., An approximate linearised Riemann solver for the Euler equations for real gases, J. Comput. Phys., 74, 382, (1988) · Zbl 0632.76079
[70] Eulderink, F.; Mellema, G., General relativistic hydrodynamics with a roe solver, preprint
[71] Donat, R.; Marquina, A., Capturing shock reflections: an improved flux formula, J. Comput. Phys., 125, 42, (1996) · Zbl 0847.76049
[72] Ibáñez, J. M.; Aloy, M. A.; Font, J. A.; Martí, J. M.; Miralles, J. A.; Pons, J. A., Riemann solvers in general relativistic hydrodynamics, 485-496, (2001), Springer US Berlin, New York · Zbl 1064.76567
[73] Punsly, B.; Balsara, D.; Kim, J.; Garain, S., Riemann solvers and alfven waves in black hole magnetospheres, Comput. Astrophys. Cosmol., 3, 1, 5, (2016)
[74] Dumbser, M.; Balsara, D. S., A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems, J. Comput. Phys., 304, 275-319, (2016) · Zbl 1349.76603
[75] Moe, S. A.; Rossmanith, J. A.; Seal, D. C., A simple and effective high-order shock-capturing limiter for discontinuous Galerkin methods, e-prints
[76] Qiu, J.; Shu, C.-W., A comparison of troubled-cell indicators for Runge-Kutta discontinuous Galerkin methods using weighted essentially nonoscillatory limiters, SIAM J. Sci. Comput., 27, 995, (2005) · Zbl 1092.65084
[77] Cockburn, B., Discontinuous Galerkin methods for convection-dominated problems, (High-Order Methods for Computational Physics, (1999), Springer Berlin, New York), 69-224 · Zbl 0937.76049
[78] Van Leer, B., Towards the ultimate conservative difference scheme, II: monotonicity and conservation combined in a second-order scheme, J. Comput. Phys., 14, 361, (1974) · Zbl 0276.65055
[79] Van Leer, B., Towards the ultimate conservative difference scheme, V: a second-order sequel to Godunov’s method, J. Comput. Phys., 32, 101, (1979) · Zbl 1364.65223
[80] Gottlieb, S.; Shu, C.-W., Total variation diminishing Runge-Kutta schemes, Math. Comput., 67, 73, (1998) · Zbl 0897.65058
[81] Gottlieb, S.; Shu, C.-W.; Tadmor, E., Strong stability-preserving high-order time discretization methods, SIAM Rev., 43, 89, (2001) · Zbl 0967.65098
[82] Kaiser, H.; Brodowicz, M.; Sterling, T., Parallex: an advanced parallel execution model for scaling-impaired applications, (International Conference on Parallel Processing Workshops, Los Alamos, California, 2009, (2009)), 394-401
[83] Sterling, T.; Kogler, D.; Anderson, M.; Brodowicz, M., SLOWER: a performance model for exascale computing, Supercomp. Front. Innov., 1, 42-57, (2014)
[84] Gürsoy, A.; Kalé, L. V., Performance and modularity benefits of message-driven execution, J. Parallel Distrib. Comput., 64, 461, (2004) · Zbl 1078.68604
[85] Zheng, G.; Meneses, E.; Bhatele, A.; Kalé, L. V., Hierarchical load balancing for charm++ applications on large supercomputers, (39th International Conference on Parallel Processing Workshops, (2010), IEEE), 436
[86] Bhandarkar, M.; Kalé, L. V.; de Sturler, E.; Hoeflinger, J., Adaptive load balancing for MPI programs, (International Conference on Computational Science, Proceedings, Part II, San Francisco, CA, USA, May 28—30, 2001, (2001), Springer Berlin, New York), 108-117 · Zbl 0983.68602
[87] Alverson, R.; Roweth, D.; Kaplan, L., The gemini system interconnect, (18th IEEE Symposium on High Performance Interconnects, (2010)), 83-87
[88] Sun, Y.; Zheng, G.; Kalé, L. V.; Jones, T. R.; Olson, R., A ugni-based asynchronous message-driven runtime system for cray supercomputers with gemini interconnect, (IEEE 26th International Parallel Distributed Processing Symposium, IPDPS, (2012)), 751-762
[89] Kalé, L. V.; Zheng, G.; Lee, C. W.; Kumar, S., Scaling applications to massively parallel machines using projections performance analysis tool, Future Gener. Comput. Syst., 22, 347, (2006)
[90] M. Bugner, 2016, private communication.
[91] Gheller, C., A high resolution hydrodynamical code for the study of cosmological structures, (1997), SISSA Trieste, Italy, Ph.D. Thesis
[92] Lora-Clavijo, F.; Cruz-Perez, J.; Guzmán, F. S.; Gonzalez, J., Exact solution of the 1D Riemann problem in Newtonian and relativistic hydrodynamics, Rev. Mex. Fis. E, 59, 28, (2013)
[93] Rezzolla, L.; Zanotti, O., An improved exact Riemann solver for relativistic hydrodynamics, J. Fluid Mech., 449, 395, (2001) · Zbl 1009.76101
[94] Lucas-Serrano, A.; Font, J. A.; Ibáñez, J. M.; Martí, J. M., Assessment of a high-resolution central scheme for the solution of the relativistic hydrodynamics equations, Astron. Astrophys., 428, 703, (2004) · Zbl 1065.85009
[95] Zhang, W.; MacFadyen RAM, A. I., A relativistic adaptive mesh refinement hydrodynamics code, Astrophys. J. Suppl. Ser., 164, 255, (2006)
[96] Komissarov, S. S., A Godunov-type scheme for relativistic magnetohydrodynamics, Mon. Not. R. Astron. Soc., 303, 343, (1999)
[97] Balsara, D., Total variation diminishing scheme for relativistic magnetohydrodynamics, Astrophys. J. Suppl. Ser., 132, 83-101, (2001)
[98] Yee, H.; Sandham, N.; Djomehri, M., Low-dissipative high-order shock-capturing methods using characteristic-based filters, J. Comput. Phys., 150, 199, (1999) · Zbl 0936.76060
[99] Jiang, G.-S.; Shu, C.-W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 1, 202-228, (1996) · Zbl 0877.65065
[100] Xu, Z.; Liu, Y.; Shu, C.-W., Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a WENO-type linear reconstruction and partial neighboring cells, J. Comput. Phys., 228, 2194, (2009) · Zbl 1165.65392
[101] Orszag, S. A.; Tang, C.-M., Small-scale structure of two-dimensional magnetohydrodynamic turbulence, J. Fluid Mech., 90, 129, (1979)
[102] Ryu, D.; Jones, T. W.; Frank, A., Numerical magnetohydrodynamics in astrophysics: algorithm and tests for multidimensional flow, Astrophys. J., 452, 785, (1995)
[103] Dai, W.; Woodward, P. R., On the divergence-free condition and conservation laws in numerical simulations for supersonic magnetohydrodynamical flows, Astrophys. J., 494, 317, (1998)
[104] Londrillo, P.; Del Zanna, L., High-order upwind schemes for multidimensional magnetohydrodynamics, Astrophys. J., 530, 508, (2000)
[105] Beckwith, K.; Stone, J. M., A second-order Godunov method for multi-dimensional relativistic magnetohydrodynamics, Astrophys. J. Suppl. Ser., 193, 6, (2011)
[106] Michel, F. C., Accretion of matter by condensed objects, Astrophys. Space Sci., 15, 153, (1972)
[107] Pretorius, F., Numerical relativity using a generalized harmonic decomposition, Class. Quantum Gravity, 22, 425, (2005) · Zbl 1067.83001
[108] Gundlach, C.; Martin-Garcia, J. M.; Calabrese, G.; Hinder, I., Constraint damping in the Z4 formulation and harmonic gauge, Class. Quantum Gravity, 22, 3767, (2005) · Zbl 1154.83302
[109] Lindblom, L.; Scheel, M. A.; Kidder, L. E.; Owen, R.; Rinne, O., A new generalized harmonic evolution system, Class. Quantum Gravity, 23, (2006) · Zbl 1191.83013
[110] Haas, R.; Ott, C. D.; Szilágyi, B.; Kaplan, J. D.; Lippuner, J.; Scheel, M. A.; Barkett, K.; Muhlberger, C. D.; Dietrich, T.; Duez, M. D.; Foucart, F.; Pfeiffer, H. P.; Kidder, L. E.; Teukolsky, S. A., Simulations of inspiraling and merging double neutron stars using the spectral Einstein code, Phys. Rev. D, 93, 12, (2016)
[111] Dubey, A.; Almgren, A.; Bell, J.; Berzins, M.; Brandt, S.; Bryan, G.; Colella, P.; Graves, D.; Lijewski, M.; Löffler, F.; O’Shea, B.; Schnetter, E.; Straalen, B. V.; Weide, K., A survey of high level frameworks in block-structured adaptive mesh refinement packages, J. Parallel Distrib. Comput., 74, 3217, (2014)
[112] Gassner, G.; Kopriva, D. A., A comparison of the dispersion and dissipation errors of Gauss and Gauss-lobatto discontinuous Galerkin spectral element methods, SIAM J. Sci. Comput., 33, 2560, (2011) · Zbl 1255.65089
[113] Teukolsky, S. A., Short note on the mass matrix for Gauss-lobatto grid points, J. Comput. Phys., 283, 408, (2015) · Zbl 1352.65578
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.