Bettaïeb, Karem On tempered representations of a reductive non-connected \(p\)-adic group: the case that \(G/G^0\) is commutative and finite. (Sur les représentations tempérées d’un groupe réductif \(p\)-adique non connexe: Cas où \(G/G^0\) est commutatif et fini.) (French) Zbl 1463.11112 Math. Bohem. 142, No. 4, 387-403 (2017). Recall the Summary of K. Bettaïeb [Algebr. Represent. Theory 16, No. 1, 275–287 (2013; Zbl 1395.20031)]: Let \(G\) be the group of points defined over a \(p\)-adic field of a non-connected reductive group. In this note, we prove that every tempered irreducible representation of \(G\) is irreducibly induced from an essential one of a cuspidal Levi subgroup of \(G\).The author now revisits this situation in the case that \(G/G^0\) is commutative and finite, where \(G^0\) denotes the identity component of \(G\). Reviewer: Wilberd van der Kallen (Utrecht) MSC: 11E95 \(p\)-adic theory 20G05 Representation theory for linear algebraic groups 20G15 Linear algebraic groups over arbitrary fields Keywords:reductive \(p\)-adic group; tempered representation Citations:Zbl 1395.20031 PDF BibTeX XML Cite \textit{K. Bettaïeb}, Math. Bohem. 142, No. 4, 387--403 (2017; Zbl 1463.11112) Full Text: DOI