Meshfree generalized finite difference methods in soil mechanics. II: Numerical results. (English) Zbl 1386.35041

Summary: In geotechnical engineering, simulations are of utmost importance. Due to large deformations, meshfree methods are more suitable than classical meshbased methods. Nevertheless, they have to be validated on the laboratory scale in order to guarantee reliable conclusions for real life applications. In this contribution, we complete the theoretical description of the two novel meshfree generalized finite difference methods Finite Pointset Method (FPM) and Soft PARticle Code (SPARC) by numerical results for the standard benchmark problems oedometric and triaxial test. We focus on the quality of the results as well as on the rate-independent character of the numerical implementation of the nonlinear barodesy model for sand.
For Part I, see [I. Ostermann et al., ibid. 4, No. 2, 167–184 (2013; Zbl 1277.74076)].


35D35 Strong solutions to PDEs
35Q74 PDEs in connection with mechanics of deformable solids
65D05 Numerical interpolation
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems


Zbl 1277.74076
Full Text: DOI


[1] Abe, K; Nakamura, S; Nakamura, H; Shiomi, K, Numerical study on dynamic behavior of slope models including weak layers from deformation to failure using material point method, Soils Found, 57, 155-175, (2017)
[2] Bandara, S; Soga, K, Coupling of soil deformation and pore fluid flow using material point method, Comput. Geotech., 63, 199-214, (2015)
[3] Bardenhagen, SG; Brackbill, JU; Sulsky, D, The material-point method for granular materials, Comput. Methods Appl. Mech. Eng., 187, 529-541, (2000) · Zbl 0971.76070
[4] Bathe, K.-J.: Finite Element Procedures, 2nd edn. Bathe K-J, Watertown (2014). ISBN 978-0-9790049-5-7 · Zbl 1326.65002
[5] Beuth, L; Więckowski, L; Vermeer, PA, Solution of quasi-static large-strain problems by the material point method, Int. J. Numer. Anal. Methods Geomech., 35, 1451-1465, (2011)
[6] Beuth, L., Ceccato, F., Rohe, A.: Modelling of cone penetration testing with the matrial point method. Bemessen mit numerischen Methoden, Workshop 24./25.09.2013, TU Hamburg-Harburg, pp. 8-25 (2013) · Zbl 1382.86005
[7] Bhandari, T; Hamad, F; Moormann, C; Sharma, KG; Westrich, B, Numerical modelling of seismic slope failure using MPM, Comput. Geotech., 75, 126-134, (2016)
[8] Blanc T (2008) Numerical simulation of debris flows with the 2D-SPH depth integrated model. Master Thesis, Institute for Mountain Risk Engineering, University of Natural Resources and Applied Life Sciences, Vienna
[9] Blanc, T; Pastor, M, A stabilized smoothed particle hydrodynamics, Taylor-Galerkin algorithm for soil dynamics problems, Int. J. Numer. Anal. Methods Geomech., 37, 1-30, (2013)
[10] Bui, HH; Fukagawa, R, An improved SPH method for saturated soils and its application to investigate the mechanisms of embankment failure: case of hydrostatic pore-water pressure, Int. J. Numer. Anal. Methods Geomech., (2011)
[11] Bui, H.H., Kodikara, J.A., Pathegama, R., Bouazza, A., Haque, A.: Large deformation and post-failure simulations of segmental retaining walls using mesh-free method (SPH). CoRR (2015). arXiv:1501.04000
[12] Carbonell, JM; Oñate, E; Suárez, B, Modelling of tunnelling processes and rock cutting tool wear with the particle finite element method, Comput. Mech., 52, 607-629, (2013) · Zbl 1282.74085
[13] Chen, C.-H.: Development of Soft Particle Code (SPARC). Ph.D. Thesis, University of Innsbruck, Logos Verlag Berlin GmbH (2014) · Zbl 1272.74464
[14] Chen, J-S; Hillman, M; Chi, S-W, Meshfree methods: progress made after 20 years, J. Eng. Mech., 143, 04017001, (2017)
[15] Coetzee, CJ; Vermeer, PA; Basson, AH, The modelling of anchors using the material point method, Int. J. Numer. Anal. Methods Geomech., 29, 879-895, (2005) · Zbl 1104.74040
[16] Cuéllar, P; Baeßler, M; Rücker, W, Ratcheting convective cells of sand grains around offshore piles under cyclic lateral loads, Granul. Matter, 11, 379-390, (2009)
[17] Dang, HK; Meguid, MA, An efficient finite-discrete element method for quasi-static nonlinear soil-structure interaction problems, Int. J. Numer. Anal. Methods Geomech., 37, 130-149, (2013)
[18] Desrues, J., Zweschper, B., Vermeer, P.A.: Database for Tests on Hostun RF Sand. Technical Report, Institute of Geotechnical Engineering, University of Stuttgart (2000)
[19] Drumm, C; Tiwari, S; Kuhnert, J; Bart, HJ, Finite pointset method for simulation of the liquid-liquid flow field in an extractor, Comput. Chem. Eng., 32, 2946-2957, (2008)
[20] Dufour, F; Mühlhaus, H-B; Moresi, L; Mühlhaus, H-B (ed.); Dyskin, A (ed.); Pasternak, E (ed.), A particle-in-cell formulation for large deformation in Cosserat continua, 133-138, (2001), Leiden
[21] Gabrieli, F; Cola, S; Calvetti, F, Use of an up-scaled DEM model for analysing the behavior of a shallow foundation on a model slope, Geomech. Geoeng., 4, 109-122, (2009)
[22] Holmes, DW; Williams, JR; Tilke, P; Leonardi, CR, Characterizing flow in oil reservoir rock using SPH: absolute permeability, Int. J. Numer. Anal. Methods Geomech., 61, 1-6, (2011)
[23] Holtz, R.D., Kovacs, W.D.: An Introduction to Geotechnical Engineering. Prentice Hall, Englewood Cliffs (1981)
[24] Hu, M; Liu, MB; Xie, MW; Liu, GR, Three-dimensional run-out analysis and prediction of flow-like landslides using smoothed particle hydrodynamics, Environ. Earth Sci., 73, 1629-1640, (2015)
[25] Jassim, I; Stolle, D; Vermeer, P, Two-phase dynamic analysis by material point method, Int. J. Numer. Anal. Methods Geomech., (2012)
[26] Jefferies, A; Kuhnert, J; Aschenbrenner, L; Giffhorn, U; Griebel, M (ed.); Schweitzer, MA (ed.), Finite pointset method for the simulation of a vehicle travelling through a body of water, 205-221, (2015), Berlin · Zbl 1342.74175
[27] Jiang, M; Yin, Z-Y, Analysis of stress redistribution in soil and Earth pressure on tunnel lining using discrete element method, Tunn. Undergr. Sp. Tech., 32, 251-259, (2012)
[28] Kardani, O; Nazem, M; Kardani, M; Sloan, S, On the application of the maximum entropy meshfree method for elastoplastic geotechnical analysis, Comput. Geotech., 84, 68-77, (2017)
[29] Khoshghalb, A; Khalili, N, A meshfree method for fully coupled analysis of flow and deformation in unsaturated porous media, Int. J. Numer. Anal. Methods Geomech., (2012)
[30] Khoshghalb, A; Khalili, N, A meshfree method for fully coupled analysis of flow and deformation in unsaturated porous media, Int. J. Numer. Anal. Methods Geomech., 37, 716-743, (2013)
[31] Khoshghalb, A; Khalili, N, An alternative approach for quasi-static large deformation analysis of saturated porous media using meshfree method, Int. J. Numer. Anal. Methods Geomech., 39, 913-936, (2015)
[32] Kolymbas, D, Barodesy: a new hypoplastic approach, Int. J. Numer. Anal. Methods Geomech., 36, 1220-1240, (2011)
[33] Kolymbas, D, Barodesy: a new constitutive frame for soils, Géotech. Lett., 2, 17-23, (2012)
[34] Kolymbas, D, Introduction to barodesy, Géotechnique, 65, 52-65, (2015)
[35] Komoróczi, A; Abe, S; Urai, JL, Meshless numerical modeling of brittle-viscous deformation: first results on boundinage and hydrofracturing using a coupling of discrete element method (DEM) and smoothed particle hydrodynamics (SPH), Comput. Geosci., 17, 373-390, (2013) · Zbl 1382.86005
[36] Kuhnert, J.: Finite Pointset Method (FPM): meshfree flow solver with applications to elastoplastic material laws. In: Ońate, E., Owen, D.R.J. (eds) Proceedings of International Conference on Particle Based Methods: Fundamentals and Applications, Particles 2009, CIMNE, pp. 423-426 (2009) · Zbl 1342.74175
[37] Kuhnert, J; Sundar, S (ed.), Meshfree numerical scheme for time dependent problems in fluid and continuum mechanics, 119-136, (2014), New Delhi
[38] Kuhnert, J., Ostermann, I.: Finite Pointset Method (FPM) and an application in soil mechanics. In: Pardo-Igúzquiza, E., Guardiola-Albert, C., Heredia, J., Moreno-Merino, L., Durán, J., Vargas-Guzmán, J. (eds.) Mathematics of Planet Earth. Lecture Notes in Earth System Sciences, pp. 815-818. Springer, Berlin (2014)
[39] Lim, K-W; Andrade, JE, Granular element method for three-dimensional discrete element method calculations, Int. J. Numer. Anal. Methods Geomech., 38, 167-188, (2014)
[40] Medicus, G; Fellin, W; Kolymbas, D, Barodesy for Clay, Géotech. Lett., 2, 173-180, (2012)
[41] Medicus, G; Kolymbas, D; Fellin, W, Proportional stress and strain paths in barodesy, Int. J. Numer. Anal. Methods Geomech., 40, 509-522, (2016)
[42] Medicus, G; Fellin, W, An improved version of barodesy for Clay, Acta Geotech., 12, 365-376, (2017)
[43] Michel, I., Kuhnert, J.: Meshfree numerical simulation in soil mechanics with the Finite Pointset Method (FPM). In: Schaeben, H., Tolosana Delgado, R., van den Boogaart, K.G., van den Boogaart, R. (eds) Proceedings of IAMG 2015 Freiberg, pp. 652-658 (G0102) (2015). ISBN 978-3-00-050337-5 (DVD)
[44] Michel, I., Kuhnert, J., Kolymbas, D.: Meshfree simulation of avalanches with the Finite Pointset Method (FPM). Geophysical Research Abstracts, vol. 19, EGU2017-13203, EGU General Assembly 2017, Vienna (2017)
[45] Murakami, A; Setsuyasu, T; Arimoto, S, Mesh-free method for soil-water coupled problem within finite strain and its numerical validity, Soils Found., 45, 145-154, (2005)
[46] Obermayr, M; Dressler, K; Vrettos, C; Eberhard, P, A bonded-particle model for cemented sand, Comput. Geotech., 49, 229-313, (2013)
[47] Obermayr, M; Vrettos, C, Anwendung der diskrete elemente methode zur vorhersage von kräften bei der bodenbearbeitung, Geotechnik, 36, 231-242, (2013)
[48] Oñate, E; Idelsohn, SR; Celigueta, MA; Rossi, R; Marti, J; Carbonell, JM; Ryzhakov, P; Suárez, B; Oñate, E (ed.); Owen, R (ed.), Advances in the particle finite element method (PFEM) for solving coupled problems in engineering, 1-49, (2011), Dordrecht · Zbl 1204.00027
[49] Oñate, E; Labra, C; Zárate, F; Rojek, J; Escuder-Bueno, I (ed.); Altarejas-García, L (ed.); Castillo-Rodríguez, JT (ed.); Matheu, E (ed.), Modelling and simulation of the effect of blast loading on structures using an adaptive blending of discrete and finite element methods, 365-371, (2011), London
[50] Ostermann, I; Kuhnert, J; Kolymbas, D; Chen, C-H; Polymerou, I; Šmilauer, V; Vrettos, C; Chen, D, Meshfree generalized finite difference methods in soil mechanics—part I: theory, Int. J. Geomath., 4, 167-184, (2013) · Zbl 1277.74076
[51] Pastor, M; Haddad, B; Sorbino, G; Cuomo, S; Drempetic, V, A depth-integrated, coupled SPH model for flow-like landslides and related phenomena, Int. J. Numer. Anal. Methods Geomech., 33, 143-172, (2008) · Zbl 1272.74464
[52] Peng, C; Wu, W; Yu, H; Wang, C, A SPH approach for large deformation analysis with hypoplastic constitutive model, Acta Geotech., 10, 703-717, (2015)
[53] Polymerou, I.: Untersuchung großer Verformungen in der Vertushka. PhD Thesis, University of Innsbruck, Logos Verlag Berlin GmbH (2017)
[54] Schenkengel, K.-U., Vrettos, C.: Modelling of liquefaction-induced lateral spreading using the Lattice Boltzmann method. In: Proceedings 5th International conference on Earthquake Geotechnical Engineering, Paper No MOLSC-922621417 (2011) · Zbl 1282.74085
[55] Schneider-Muntau, B; Chen, C-H; Bathaeian, SMI, Simulation of shear bands with soft particle code (SPARC) and FE, Int. J. Geomath., 8, 135-151, (2017) · Zbl 1396.74097
[56] Sloan, SW; Nazem, M; Zakrzewski, N; Cassidy, M, On application of the maximum entropy meshless method for large deformation analysis of geotechnical problems, Appl. Mech. Mater., 846, 331-335, (2016)
[57] Soga, K; Alonso, E; Yerro, A; Kumar, K; Bandara, S, Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method, Géotechnique, 66, 1-26, (2015)
[58] Suchde, P., Kuhnert, J.: Point cloud movement for fully Lagrangian meshfree methods. (2017) arXiv:1704.00618 · Zbl 1432.76197
[59] Suchde, P., Kuhnert, J., Tiwari, S.: On meshfree GFDM solvers for the incompressible Navier-Stokes equations. (2017) arXiv:1701.03427 · Zbl 1390.76628
[60] Suchde, P; Kuhnert, J; Schröder, S; Klar, A, A flux conserving meshfree method for conservation laws, Int. J. Numer. Methods Eng., (2017)
[61] Tiwari, S; Antonov, S; Hietel, D; Kuhnert, J; Wegener, R; Griebel, M (ed.); Schweitzer, MA (ed.), A meshfree method for simulations of interactions between fluids and flexible structures, 249-264, (2007), Berlin · Zbl 1111.76042
[62] Tiwari, S; Kuhnert, J, A meshfree method for incompressible fluid flows with incorporated surface tension, Revue Eur. Élém., 11, 965-987, (2002) · Zbl 1120.76355
[63] Tiwari, S; Kuhnert, J; Griebel, M (ed.); Schweitzer, MA (ed.), Finite pointset method based on the projection method for simulations of the incompressible Navier-Stokes equations, No. 26, 373-387, (2002), Berlin · Zbl 1090.76566
[64] Tiwari, S; Kuhnert, J; Rao, GS (ed.), Grid free method for solving Poisson equation, 151-166, (2004), New Delhi
[65] Tiwari, S; Kuhnert, J; Griebel, M (ed.); Schweitzer, MA (ed.), A numerical scheme for solving incompressible and low Mach number flows by finite pointset method, No. 43, 191-206, (2005), Berlin · Zbl 1063.76078
[66] Tiwari, S; Kuhnert, J, Modeling of two-phase flows with surface tension by finite pointset method (FPM), J. Comput. Appl. Math., 203, 376-386, (2007) · Zbl 1113.76074
[67] Tramecon, A., Kuhnert, J.: Simulation of advanced folded airbags with VPS-PAMCRASH/FPM: development and validation of turbulent flow numerical simulation techniques applied to curtain bag deployments. SAE Technical Paper 2013-01-1158 (2013) doi:10.4271/2013-01-1158
[68] Tootoonchi, A; Liu, GR; Khalili, N, A cell-based smoothed point interpolation method for flow-deformation analysis of saturated porous media, Comput. Geotech., 75, 159-173, (2016)
[69] Uhlmann, E; Gerstenberger, R; Kuhnert, J, Cutting simulation with the meshfree finite pointset method, Procedia CIRP, 8, 391-396, (2013)
[70] Vermeer, P.A., Beuth, L., Benz, T.: A Quasi-static method for large deformation problems in geomechanics. In: Proceedings 12th IACMAG, pp. 55-63 (2008)
[71] Wu, CT; Chen, JS; Chi, L; Huck, F, Lagrangian meshfree formulation for analysis of geotechnical materials, J. Eng. Mech., 127, 440-449, (2001)
[72] Zhu, HH; Miao, YB; Cai, YC; Liu, G (ed.); Tan, V (ed.); Han, X (ed.), Meshless natural neighbour method and its application in elasto-plastic problems, 1465-1475, (2006), Berlin
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.