×

Brouwer-Zadeh posets and three-valued Łukasiewicz posets. (English) Zbl 0682.03036

The authors study a Brouwer-Zadeh poset which has the Zadeh completion and the Brouwerian complementation. They give a construction of a three- valued Brouwer-Zadeh poset from a given Brouwer Zadeh poset. The set of all generalized characteristic mappings on a reference space and the set of all generalized orthogonal projections on a Hilbert space are dealt with as intriguing examples of Brouwer-Zadeh posets.
Reviewer: H.Nishimura

MSC:

03G12 Quantum logic
06A05 Total orders
03B52 Fuzzy logic; logic of vagueness
03B45 Modal logic (including the logic of norms)
03B50 Many-valued logic
06C15 Complemented lattices, orthocomplemented lattices and posets
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Cattaneo, G.; Manià, A., Abstract orthogonality and orthocomplementations, (Proc. Cambridge Philos. Soc., 76 (1974)), 115 · Zbl 0295.06007
[2] Szymanska-Bartman, M., Orthogonality and orthocomplementation in partially ordered sets, Demonstratio Math., 12, 529 (1979) · Zbl 0421.06011
[3] Zadeh, L. A., Fuzzy sets, Inform and Control, 8, 228 (1965) · Zbl 0139.24606
[4] Cattaneo, G., Fuzzy events and fuzzy logics in classical informations systems, J. Math. Anal. Appl., 75, 523 (1980) · Zbl 0447.94062
[5] Birkhoff, G., Lattice Theory, (Amer. Math. Soc. Coll. Pub., Vol. 25 (1967), AMS: AMS Providence, RI) · Zbl 0126.03801
[6] Rasiowa, H.; Sikorski, R., The Mathematics of Metamathematics (1970), PWN-Polish Scientific Pub: PWN-Polish Scientific Pub Warszawa · Zbl 0122.24311
[7] Moisil, G. C., Recherches sur les logiques nonchrysippiennes, Ann. Sci. Univ. Iasy, 26, 431 (1940) · JFM 66.1194.02
[8] Moisil, G. C., Notes sur les logiques nonchrysippiennes, Ann. Sci. Univ. Iasy, 27, 86 (1941) · JFM 67.0972.09
[9] Skala, H. J., On many-valued logics, fuzzy sets, fuzzy logics and their applications, Fuzzy Sets and Systems, 1, 129 (1978) · Zbl 0396.03024
[10] Cignoli, R.; Monteiro, A., Boolean elements in Łukasiewicz algebras. II, (Proc. Japan Acad., 41 (1965)), 676 · Zbl 0168.00602
[11] Cignoli, R., Moisil Algebras, (Notas de Logica Matematica (1970), Instituto de Matematica, Univ. Nacional del Sur: Instituto de Matematica, Univ. Nacional del Sur Bahia Blanca, Argentina), No. 27 · Zbl 0212.31701
[12] Piron, C., Foundations of Quantum Physics (1976), Benjamin: Benjamin Reading, MA · Zbl 0333.46050
[13] Cattaneo, G.; Nisticò, G., A model of the Jauch-Piron approach to the foundation of quantum physics based on preclusivity spaces, (Preprint DMUC (1986))
[14] De Luca, A.; Termini, S., Algebraic properties of fuzzy sets, J. Math. Anal. Appl., 40, 373 (1972) · Zbl 0211.31002
[15] Randall, C. H.; Foulis, D. J., Operational statistics, I, Basic concepts, J. Math. Phys., 13, 1667 (1972) · Zbl 0287.60002
[16] Foulis, D. J.; Randall, C. H., Operational statistics, II, Manual of operations and their logic, J. Math. Phys., 14, 1472 (1973) · Zbl 0287.60003
[17] Cattaneo, G.; Marino, G., Non-usual orthocomplementations on partially ordered sets and fuzziness, Fuzzy Sets and Systems, 25, 107 (1988) · Zbl 0631.06005
[18] Cignoli, R., Injective de Morgan and Kleene algebras, (Proc. Amer. Math. Soc., 47 (1975)), 269 · Zbl 0301.06009
[19] Hermann, L.; Piziak, R., Modal propositional logic on an orthomodular basis, J. Symb. Logic, 3, 478 (1974) · Zbl 0301.02023
[20] Halmos, P. R., Algebraic Logic (1962), Chelsea: Chelsea New York · Zbl 0101.01101
[21] Bellman, R.; Giertz, M., On the analytic formalism of the theory of fuzzy sets, Inform. Sci., 5, 149 (1973) · Zbl 0251.02059
[22] Srinivas, M. D., Foundations of a quantum probability theory, J. Math. Phys., 16, 1672 (1975)
[23] Randall, C. H.; Foulis, D. J., Properties and operational propositions in quantum mechanics, Found. Phys., 13, 813 (1983)
[24] Atanassov, K. T., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, 87 (1986) · Zbl 0631.03040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.