×

zbMATH — the first resource for mathematics

SPARC: accurate and efficient finite-difference formulation and parallel implementation of density functional theory: isolated clusters. (English) Zbl 1376.78001
Summary: As the first component of SPARC (Simulation Package for Ab-initio Real-space Calculations), we present an accurate and efficient finite-difference formulation and parallel implementation of Density Functional Theory (DFT) for isolated clusters. Specifically, utilizing a local reformulation of the electrostatics, the Chebyshev polynomial filtered self-consistent field iteration, and a reformulation of the non-local component of the force, we develop a framework using the finite-difference representation that enables the efficient evaluation of energies and atomic forces to within the desired accuracies in DFT. Through selected examples consisting of a variety of elements, we demonstrate that SPARC obtains exponential convergence in energy and forces with domain size; systematic convergence in the energy and forces with mesh-size to reference plane-wave result at comparably high rates; forces that are consistent with the energy, both free from any noticeable ’egg-box’ effect; and accurate ground-state properties including equilibrium geometries and vibrational spectra. In addition, for systems consisting up to thousands of electrons, SPARC displays weak and strong parallel scaling behavior that is similar to well-established and optimized plane-wave implementations, but with a significantly reduced prefactor. Overall, SPARC represents an attractive alternative to plane-wave codes for practical DFT simulations of isolated clusters.

MSC:
78A30 Electro- and magnetostatics
81V70 Many-body theory; quantum Hall effect
65Y05 Parallel numerical computation
Software:
CheFSI; SPARC; PETSc; LAPACK
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hohenberg, P.; Kohn, W., Phys. Rev., 136, B864-B871, (1964)
[2] Kohn, W.; Sham, L. J., Phys. Rev., 140, A1133-A1138, (1965)
[3] Jones, R. O.; Gunnarsson, O., Rev. Modern Phys., 61, 689-746, (1989)
[4] Ziegler, T., Chem. Rev., 91, 651-667, (1991)
[5] Kohn, W.; Becke, A. D.; Parr, R. G., J. Phys. Chem., 100, 12974-12980, (1996)
[6] Jones, R. O., Rev. Modern Phys., 87, 897-923, (2015)
[7] Parr, R. G.; Yang, W., Annu. Rev. Phys. Chem., 46, 701-728, (1995)
[8] Kaduk, B.; Kowalczyk, T.; Van Voorhis, T., Chem. Rev., 112, 321-370, (2011)
[9] Yang, W., Phys. Rev. Lett., 66, 1438, (1991)
[10] Carter, E. A., Science, 321, 800-803, (2008)
[11] Marx, D.; Hutter, J., Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods, (2009), Cambridge University Press
[12] Kresse, G.; Hafner, J., Phys. Rev. B, 47, 558, (1993)
[13] Kresse, G.; Furthmüller, J., Phys. Rev. B, 54, 11169-11186, (1996)
[14] Segall, M. D.; Lindan, P. J.D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C., J. Phys.: Condens. Matter, 14, 2717-2744, (2002)
[15] Gonze, X.; Beuken, J. M.; Caracas, R.; Detraux, F.; Fuchs, M.; Rignanese, G. M.; Sindic, L.; Verstraete, M.; Zerah, G.; Jollet, F.; Torrent, M.; Roy, A.; Mikami, M.; Ghosez, P.; Raty, J. Y.; Allan, D. C., Comput. Mater. Sci., 25, (2002), 478-492(15)
[16] Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I.; Dal Corso, A.; de Gironcoli, S.; Fabris, S.; Fratesi, G.; Gebauer, R.; Gerstmann, U.; Gougoussis, C.; Kokalj, A.; Lazzeri, M.; Martin-Samos, L.; Marzari, N.; Mauri, F.; Mazzarello, R.; Paolini, S.; Pasquarello, A.; Paulatto, L.; Sbraccia, C.; Scandolo, S.; Sclauzero, G.; Seitsonen, A. P.; Smogunov, A.; Umari, P.; Wentzcovitch, R. M., J. Phys.: Condens. Matter, 21, (2009), 395502 (19pp)
[17] Marx, D.; Hutter, J., Mod. Methods Algorithms Quantum Chem., 1, 301-449, (2000)
[18] Ismail-Beigi, S.; Arias, T. A., Comput. Phys. Comm., 128, 1-45, (2000)
[19] Gygi, F., IBM J. Res. Dev., 52, 137-144, (2008)
[20] Cooley, J.; Tukey, J., Math. Comp., 19, 297, (1965)
[21] Leszczynski, J., Handbook of Computational Chemistry, Vol. 2, (2012), Springer Science & Business Media
[22] Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T.; Joannopoulos, J., Rev. Modern Phys., 64, 1045-1097, (1992)
[23] Hutter, J.; Lüthi, H. P.; Parrinello, M., Comput. Mater. Sci., 2, 244-248, (1994)
[24] Freysoldt, C.; Neugebauer, J.; Van de Walle, C. G., Phys. Rev. Lett., 102, (2009)
[25] Probert, M.; Payne, M., Phys. Rev. B, 67, (2003)
[26] Suryanarayana, P.; Bhattacharya, K.; Ortiz, M., J. Mech. Phys. Solids, 61, 38-60, (2013)
[27] Hockney, R. W.; Eastwood, J. W., Computer Simulation Using Particles, (1981) · Zbl 0662.76002
[28] Bylaska, E. J.; Taylor, P. R.; Kawai, R.; Weare, J. H., J. Phys. Chem., 100, 6966-6972, (1996)
[29] Goedecker, S., Rev. Modern Phys., 71, 1085-1123, (1999)
[30] Bowler, D. R.; Miyazaki, T., Rep. Progr. Phys., 75, (2012)
[31] Bottin, F.; Leroux, S.; Knyazev, A.; Zérah, G., Comput. Mater. Sci., 42, 329-336, (2008)
[32] Tuckerman, M. E.; Yarne, D.; Samuelson, S. O.; Hughes, A. L.; Martyna, G. J., Comput. Phys. Comm., 128, 333-376, (2000)
[33] Banerjee, A. S.; Elliott, R. S.; James, R. D., J. Comput. Phys., 287, 226-253, (2015)
[34] Chelikowsky, J. R.; Troullier, N.; Saad, Y., Phys. Rev. Lett., 72, 1240, (1994)
[35] Castro, A.; Appel, H.; Oliveira, M.; Rozzi, C. A.; Andrade, X.; Lorenzen, F.; Marques, M. A.L.; Gross, E. K.U.; Rubio, A., Physica Status Solidi B-Basic Solid State Physics, 243, 2465-2488, (2006)
[36] Briggs, E.; Sullivan, D.; Bernholc, J., Phys. Rev. B, 54, 14362, (1996)
[37] Fattebert, J.-L., J. Comput. Phys., 149, 75-94, (1999)
[38] Shimojo, F.; Kalia, R. K.; Nakano, A.; Vashishta, P., Comput. Phys. Comm., 140, 303-314, (2001)
[39] Pask, J. E.; Klein, B. M.; Fong, C. Y.; Sterne, P. A., Phys. Rev. B, 59, 12352-12358, (1999)
[40] White, S. R.; Wilkins, J. W.; Teter, M. P., Phys. Rev. B, 39, 5819, (1989)
[41] Tsuchida, E.; Tsukada, M., Phys. Rev. B, 52, 5573, (1995)
[42] Suryanarayana, P.; Gavini, V.; Blesgen, T.; Bhattacharya, K.; Ortiz, M., J. Mech. Phys. Solids, 58, 256-280, (2010)
[43] Motamarri, P.; Iyer, M.; Knap, J.; Gavini, V., J. Comput. Phys., 231, 6596-6621, (2012)
[44] Fang, J.; Gao, X.; Zhou, A., J. Comput. Phys., 231, 3166-3180, (2012)
[45] Bylaska, E. J.; Holst, M.; Weare, J. H., J. Chem. Theory Comput., 5, 937-948, (2009)
[46] Batcho, P. F., Phys. Rev. A, 57, 4246-4252, (1998)
[47] Arias, T. A., Rev. Modern Phys., 71, 267, (1999)
[48] Cho, K.; Arias, T.; Joannopoulos, J.; Lam, P. K., Phys. Rev. Lett., 71, 1808, (1993)
[49] Genovese, L.; Neelov, A.; Goedecker, S.; Deutsch, T.; Ghasemi, S. A.; Willand, A.; Caliste, D.; Zilberberg, O.; Rayson, M.; Bergman, A., J. Chem. Phys., 129, (2008)
[50] Fann, G. I.; Harrison, R. J.; Beylkin, G.; Jia, J.; Hartman-Baker, R.; Shelton, W. A.; Sugiki, S., J. Phys.: Conf. Ser., 78, (2007)
[51] Skylaris, C.-K.; Haynes, P. D.; Mostofi, A. A.; Payne, M. C., J. Chem. Phys., 122, (2005)
[52] Bowler, D. R.; Choudhury, R.; Gillan, M. J.; Miyazaki, T., Physica Status Solidi B, 243, 989-1000, (2006)
[53] Masud, A.; Kannan, R., Comput. Methods Appl. Mech. Engrg., 241, 112-127, (2012)
[54] Suryanarayana, P.; Bhattacharya, K.; Ortiz, M., J. Comput. Phys., 230, 5226-5238, (2011)
[55] Souto-Casares, J.; Chan, T.-L.; Chelikowsky, J. R.; Ho, K.-M.; Wang, C.-Z.; Zhang, S., Phys. Rev. B, 92, (2015)
[56] Y. Hasegawa, J.-I. Iwata, M. Tsuji, D. Takahashi, A. Oshiyama, K. Minami, T. Boku, F. Shoji, A. Uno, M. Kurokawa, et al., in: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, ACM, p. 1.
[57] Andrade, X.; Strubbe, D.; De Giovannini, U.; Larsen, A. H.; Oliveira, M. J.; Alberdi-Rodriguez, J.; Varas, A.; Theophilou, I.; Helbig, N.; Verstraete, M. J., Phys. Chem. Chem. Phys., 17, 31371-31396, (2015)
[58] Ono, T.; Heide, M.; Atodiresei, N.; Baumeister, P.; Tsukamoto, S.; Blügel, S., Phys. Rev. B, 82, (2010)
[59] Bobbitt, N. S.; Schofield, G.; Lena, C.; Chelikowsky, J. R., Phys. Chem. Chem. Phys., (2015)
[60] Li, P.; Liu, X.; Chen, M.; Lin, P.; Ren, X.; Lin, L.; Yang, C.; He, L., Comput. Mater. Sci., 112 (Part B), 503-517, (2016), Computational Materials Science in China
[61] E. Artacho, Periodic Linear Combination of Atomic Orbitals and Order-N Methods, Wiley Online Library, pp. 77-92.
[62] Zhou, Y.; Saad, Y.; Tiago, M. L.; Chelikowsky, J. R., J. Comput. Phys., 219, 172-184, (2006)
[63] Zhou, Y.; Saad, Y.; Tiago, M. L.; Chelikowsky, J. R., Phys. Rev. E, 74, (2006)
[64] Mermin, N. D., Phys. Rev., 137, A1441-A1443, (1965)
[65] Perdew, J. P.; Yue, W., Phys. Rev. B, 33, 8800, (1986)
[66] Kleinman, L.; Bylander, D., Phys. Rev. Lett., 48, 1425, (1982)
[67] Pask, J. E.; Sterne, P. A., Phys. Rev. B, 71, (2005)
[68] Suryanarayana, P.; Phanish, D., J. Comput. Phys., 275, 524-538, (2014)
[69] Slater, J. C., The Self-consistent Field for Molecules and Solids, vol. 4, (1974), McGraw-Hill New York
[70] Fang, H.-r.; Saad, Y., Numer. Linear Algebra Appl., 16, 197-221, (2009)
[71] Lin, L.; Yang, C., SIAM J. Sci. Comput., 35, S277-S298, (2013)
[72] Pratapa, P. P.; Suryanarayana, P., Chem. Phys. Lett., 635, 69-74, (2015)
[73] Banerjee, A. S.; Suryanarayana, P.; Pask, J. E., Chem. Phys. Lett., 647, 31-35, (2016)
[74] Harris, J., Phys. Rev. B, 31, 1770, (1985)
[75] Foulkes, W. M.C.; Haydock, R., Phys. Rev. B, 39, 12520, (1989)
[76] Hirose, K.; Ono, T.; Fujimoto, Y.; Tsukamoto, S., First-Principles Claculations in Real-Space Formalism, (2005)
[77] Pratapa, P. P.; Suryanarayana, P.; Pask, J. E., Comput. Phys. Comm., (2015)
[78] Balay, S.; Brown, J.; Buschelman, K.; Eijkhout, V.; Gropp, W. D.; Kaushik, D.; Knepley, M. G.; McInnes, L. C.; Smith, B. F.; Zhang, H., PETSc Users Manual, Technical Report, ANL-95/11 - Revision 3.4, (2013), Argonne National Laboratory
[79] Balay, S.; Gropp, W. D.; McInnes, L. C.; Smith, B. F., (Arge, E.; Bruaset, A. M.; Langtangen, H. P., Modern Software Tools in Scientific Computing, (1997), Birkhäuser Press), 163-202
[80] Mazziotti, D. A., Chem. Phys. Lett., 299, 473-480, (1999)
[81] Ghosh, S.; Suryanarayana, P., J. Comput. Phys., 307, 634-652, (2016)
[82] Ahlberg, J. H.; Nilson, E.; Walsh, J., Mathematics in Science and Engineering, (1967), Academic Press New York · Zbl 0158.15901
[83] Burdick, W. R.; Saad, Y.; Kronik, L.; Vasiliev, I.; Jain, M.; Chelikowsky, J. R., Comput. Phys. Comm., 156, 22-42, (2003)
[84] Hackbusch, W., Multi-grid Methods and Applications, vol. 4, (2013), Springer Science & Business Media
[85] Knyazev, A. V., SIAM J. Sci. Comput., 23, 517-541, (2001)
[86] Levitt, A.; Torrent, M., Comput. Phys. Comm., 187, 98-105, (2015)
[87] Zhou, Y.; Chelikowsky, J. R.; Saad, Y., J. Comput. Phys., 274, 770-782, (2014)
[88] Perdew, J. P.; Wang, Y., Phys. Rev. B, 45, 13244-13249, (1992)
[89] Ceperley, D. M.; Alder, B. J., Phys. Rev. Lett., 45, 566-569, (1980)
[90] Troullier, N.; Martins, J. L., Phys. Rev. B, 43, 1993-2006, (1991)
[91] Hestenes, M. R.; Stiefel, E., J. Res. Natl. Bur. Stand., 49, 409-436, (1952)
[92] Golub, G. H.; Van Loan, C. F., (Matrix Computations, vol. 3, (2012), JHU Press)
[93] Lanczos, C., An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral Operators, (1950), United States Government Press Office · Zbl 0067.33703
[94] Watkins, D. S., Fundamentals of Matrix Computations, vol. 64, (2004), John Wiley & Sons
[95] Anderson, E.; Bai, Z.; Bischof, C.; Blackford, S.; Demmel, J.; Dongarra, J.; Du Croz, J.; Greenbaum, A.; Hammarling, S.; McKenney, A.; Sorensen, D., LAPACK Users’ Guide, (1999), Society for Industrial and Applied Mathematics Philadelphia, PA · Zbl 0934.65030
[96] Press, W. H., Numerical Recipes 3rd Edition: The Art of Scientific Computing, (2007), Cambridge University Press
[97] Anderson, D. G., J. ACM, 12, 547-560, (1965)
[98] Shewchuk, J. R., An Introduction to the Conjugate Gradient Method Without the Agonizing Pain, (1994)
[99] Gonze, X.; Amadon, B.; Anglade, P.-M.; Beuken, J.-M.; Bottin, F.; Boulanger, P.; Bruneval, F.; Caliste, D.; Caracas, R.; Cote, M., Computer Physics Communications, 180, 2582-2615, (2009)
[100] Gonze, X., Z. Kristallogr., 220, 558-562, (2005)
[101] Ono, T.; Hirose, K., Phys. Rev. Lett., 82, 5016-5019, (1999)
[102] Brázdová, V.; Bowler, D. R., Atomistic Computer Simulations: A Practical Guide, (2013), John Wiley & Sons · Zbl 1273.81003
[103] Mohan, J., Organic Spectroscopy: Principles and Aapplications, (2004), CRC Press
[104] Huber, K.-P., Molecular Spectra and Molecular Structure: IV. Constants of Diatomic Molecules, (2013), Springer Science & Business Media
[105] Becke, A. D., J. Chem. Phys., 97, (1992)
[106] King-Smith, R.; Payne, M.; Lin, J., Phys. Rev. B, 44, 13063, (1991)
[107] Batcho, P., Phys. Rev. E, 61, 7169, (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.