×

zbMATH — the first resource for mathematics

On the impact of configuration on abstract argumentation automated reasoning. (English) Zbl 1423.68411
Summary: In this paper we consider the impact of configuration of abstract argumentation reasoners both when using a single solver and choosing combinations of framework representation-solver options; and also when composing portfolios of algorithms.
To exemplify the impact of the framework-solver configuration we consider one of the most configurable solvers, namely \(\mathbf{ArgSemSAT}\) – runner-up of the last competition on computational models of argumentation (ICCMA-15) – for enumerating preferred extensions. We discuss how to configure the representation of the argumentation framework in the input file and show how this coupled framework-solver configuration can have a remarkable impact on performance.
As to the impact of configuring differently structured portfolios of abstract argumentation solvers, we consider the solvers submitted to ICCMA-15, which provided the community with a heterogeneous panorama of approaches for handling abstract argumentation frameworks. A superficial reading of the results of ICCMA-15 is that reduction-based systems (either SAT-based or ASP-based) are always the most efficient. Our investigation, concerning the enumeration of stable and preferred extensions, shows that this is not true in full generality and suggests the areas where the relatively under-developed non-reduction-based systems should focus more to improve their performance. Moreover, it also highlights that the state-of-the-art solvers are very complementary and can be successfully combined in portfolios.

MSC:
68T15 Theorem proving (deduction, resolution, etc.) (MSC2010)
68T27 Logic in artificial intelligence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Dung, P. M., On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming, and n-person games, Artif. Intell., 77, 2, 321-357, (1995) · Zbl 1013.68556
[2] Baroni, P.; Caminada, M.; Giacomin, M., An introduction to argumentation semantics, Knowl. Eng. Rev., 26, 4, 365-410, (2011)
[3] Cerutti, F.; Giacomin, M.; Vallati, M., Argsemsat: solving argumentation problems using SAT, (Proc. of COMMA, (2014)), 455-456
[4] Lagniez, J.; Lonca, E.; Mailly, J., Coquiaas: a constraint-based quick abstract argumentation solver, (Proc. of ICTAI, (2015)), 928-935
[5] Hutter, F.; Hoos, H. H.; Leyton-Brown, K.; Stützle, T., Paramils: an automatic algorithm configuration framework, J. Artif. Intell. Res., 36, 267-306, (2009) · Zbl 1192.68831
[6] Ansótegui, C.; Sellmann, M.; Tierney, K., A gender-based genetic algorithm for the automatic configuration of algorithms, (Proc. of CP, (2009)), 142-157
[7] Yuan, Z.; Stützle, T.; Birattari, M., Mads/f-race: mesh adaptive direct search meets f-race, (Proc. of IEA/AIE, (2010)), 41-50 · Zbl 1295.90107
[8] Cerutti, F.; Vallati, M.; Giacomin, M., On the effectiveness of automated configuration in abstract argumentation reasoning, (Proc. of COMMA, (2016), IOS Press), 199-206
[9] Hutter, F.; Hoos, H. H.; Leyton-Brown, K., Sequential model-based optimization for general algorithm configuration, (Proc. of LION, (2011)), 507-523
[10] Hutter, F.; Xu, L.; Hoos, H. H.; Leyton-Brown, K., Algorithm runtime prediction: methods & evaluation, Artif. Intell., 206, 79-111, (2014) · Zbl 1334.68185
[11] Vallati, M.; Hutter, F.; Chrpa, L.; McCluskey, T. L., On the effective configuration of planning domain models, (Proc. of IJCAI, (2015))
[12] Charwat, G.; Dvořák, W.; Gaggl, S. A.; Wallner, J. P.; Woltran, S., Methods for solving reasoning problems in abstract argumentation - a survey, Artif. Intell., 220, 28-63, (2015) · Zbl 1328.68212
[13] Cerutti, F.; Vallati, M.; Giacomin, M., Where are we now? state of the art and future trends of solvers for hard argumentation problems, (Proc. of COMMA, (2016), IOS Press), 207-218
[14] Vallati, M.; Chrpa, L.; Kitchin, D. E., Portfolio-based planning: state of the art, common practice and open challenges, AI Commun., 28, 4, 717-733, (2015)
[15] Xu, L.; Hutter, F.; Hoos, H. H.; Leyton-Brown, K., Satzilla: portfolio-based algorithm selection for sat, J. Artif. Intell. Res., 565-606, (2008) · Zbl 1182.68272
[16] Hoos, H.; Lindauer, M.; Schaub, T., Claspfolio 2: advances in algorithm selection for answer set programming, Theory Pract. Log. Program., 14 (Special Issue 4-5), 569-585, (2014) · Zbl 1307.68016
[17] Rice, J. R., The algorithm selection problem, Adv. Comput., 15, 65-118, (1976)
[18] Cerutti, F.; Giacomin, M.; Vallati, M., Algorithm selection for preferred extensions enumeration, (Proc. of COMMA, (2014)), 221-232
[19] Brochenin, R.; Linsbichler, T.; Maratea, M.; Wallner, J. P.; Woltran, S., (Proc. of TAFA Workshop, (2015)), 40-58, Ch. Abstract Solvers for Dung’s Argumentation Frameworks · Zbl 1335.68246
[20] Baroni, P.; Cerutti, F.; Dunne, P. E.; Giacomin, M., Automata for infinite argumentation structures, Artif. Intell., 203, 104-150, (2013) · Zbl 1329.68243
[21] Breiman, L., Random forests, Mach. Learn., 45, 1, 5-32, (2001) · Zbl 1007.68152
[22] Egly, U.; Gaggl, S. A.; Woltran, S., Aspartix: implementing argumentation frameworks using answer-set programming, Log. Program., 734-738, (2008)
[23] Cerutti, F.; Vallati, M.; Giacomin, M., Argsemsat-1.0: exploiting sat solvers in abstract argumentation, (System Descriptions of the First International Competition on Computational Models of Argumentation, ICCMA, (2015)), 4
[24] Audemard, G.; Simon, L., Lazy clause exchange policy for parallel sat solvers, (Proc. of SAT, (2014)), 197-205 · Zbl 1423.68431
[25] Barabasi, A.; Albert, R., Emergence of scaling in random networks, Science, 286, 5439, 11, (1999)
[26] Erdös, P.; Rényi, A., On random graphs. I, Publ. Math. (Debr.), 6, 290-297, (1959) · Zbl 0092.15705
[27] Watts, D. J.; Strogatz, S. H., Collective dynamics of ‘small-world’ networks, Nature, 393, 6684, 440-442, (1998) · Zbl 1368.05139
[28] Cerutti, F.; Giacomin, M.; Vallati, M., Generating challenging benchmark afs, (Proc. of COMMA, (2014)), 457-458
[29] Cerutti, F.; Oren, N.; Strass, H.; Thimm, M.; Vallati, M., A benchmark framework for a computational argumentation competition, (Proc. of COMMA, (2014)), 459-460
[30] Vallati, M.; Chrpa, L.; Grzes, M.; McCluskey, T. L.; Roberts, M.; Sanner, S., The 2014 international planning competition: progress and trends, AI Mag., 36, 3, 90-98, (2015)
[31] Wilcoxon, F., Individual comparisons by ranking methods, Biom. Bull., 1, 6, 80-83, (1945)
[32] Hutter, F.; Hoos, H.; Leyton-Brown, K., An efficient approach for assessing hyperparameter importance, (Proc. of ICML, (2014)), 754-762
[33] Cerutti, F.; Dunne, P. E.; Giacomin, M.; Vallati, M., Computing preferred extensions in abstract argumentation: a SAT-based approach, (Proc. of TAFA Workshop, (2014)), 176-193 · Zbl 1405.68344
[34] Eén, N.; Sörensson, N., An extensible SAT-solver, (Proc. of SAT, (2003)), 502-518 · Zbl 1204.68191
[35] Thimm, M.; Villata, S.; Cerutti, F.; Oren, N.; Strass, H.; Vallati, M., Summary report of the first international competition on computational models of argumentation, AI Mag., 37, 1, 102, (2016)
[36] Thimm, M.; Villata, S., System descriptions of the first international competition on computational models of argumentation (ICCMA), arXiv preprint
[37] Baroni, P.; Giacomin, M.; Guida, G., SCC-recursiveness: a general schema for argumentation semantics, Artif. Intell., 168, 1-2, 165-210, (2005) · Zbl 1132.68765
[38] Seipp, J.; Braun, M.; Garimort, J.; Helmert, M., Learning portfolios of automatically tuned planners, (Proc. of ICAPS, (2012)), 369-372
[39] Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I. H., The WEKA data mining software: an update, SIGKDD Explor., 11, 1, 10-18, (2009)
[40] Gaggl, S. A.; Linsbichler, T.; Maratea, M.; Woltran, S., Introducing the second international competition on computational models of argumentation, (Proc. of (SAFA) Workshop, (2016)), 4-9
[41] Caminada, M., On the issue of reinstatement in argumentation, (Proc. of JELIA, (2006)), 111-123 · Zbl 1152.68600
[42] Baroni, P.; Caminada, M.; Giacomin, M., An introduction to argumentation semantics, Knowl. Eng. Rev., 26, 4, 365-410, (2011)
[43] Caminada, M.; Gabbay, D. M., A logical account of formal argumentation, Stud. Log., 93, 2-3, 109-145, (2009), (Special issue: new ideas in argumentation theory) · Zbl 1188.03011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.