×

Matrix thermalization. (English) Zbl 1377.83063

Summary: Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

MSC:

83C80 Analogues of general relativity in lower dimensions
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81S10 Geometry and quantization, symplectic methods

Software:

TensoriaCalc
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Kovchegov, YV; Taliotis, A., Early time dynamics in heavy ion collisions from AdS/CFT correspondence, Phys. Rev., C 76, 014905, (2007)
[2] Albacete, JL; Kovchegov, YV; Taliotis, A., Modeling heavy ion collisions in AdS/CFT, JHEP, 07, 100, (2008)
[3] Chesler, PM; Yaffe, LG, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett., 102, 211601, (2009)
[4] Beuf, G.; Heller, MP; Janik, RA; Peschanski, R., Boost-invariant early time dynamics from AdS/CFT, JHEP, 10, 043, (2009)
[5] Abajo-Arrastia, J.; Aparicio, J.; Lopez, E., Holographic evolution of entanglement entropy, JHEP, 11, 149, (2010) · Zbl 1294.81128
[6] Albash, T.; Johnson, CV, Evolution of holographic entanglement entropy after thermal and electromagnetic quenches, New J. Phys., 13, 045017, (2011)
[7] Balasubramanian, V.; etal., Thermalization of strongly coupled field theories, Phys. Rev. Lett., 106, 191601, (2011)
[8] Heller, MP; Janik, RA; Witaszczyk, P., The characteristics of thermalization of boost-invariant plasma from holography, Phys. Rev. Lett., 108, 201602, (2012)
[9] Heller, MP; Mateos, D.; Schee, W.; Trancanelli, D., Strong coupling isotropization of non-abelian plasmas simplified, Phys. Rev. Lett., 108, 191601, (2012)
[10] Balasubramanian, V.; etal., Inhomogeneous thermalization in strongly coupled field theories, Phys. Rev. Lett., 111, 231602, (2013)
[11] S. Lin and E. Shuryak, Toward the AdS/CFT gravity dual for high energy collisions. III. Gravitationally collapsing shell and quasiequilibrium, Phys. Rev.D 78 (2008) 125018 [arXiv:0808.0910] [INSPIRE]. · Zbl 1080.81602
[12] Balasubramanian, V.; Bernamonti, A.; Copland, N.; Craps, B.; Galli, F., Thermalization of mutual and tripartite information in strongly coupled two dimensional conformal field theories, Phys. Rev., D 84, 105017, (2011)
[13] Liu, H.; Suh, SJ, Entanglement tsunami: universal scaling in holographic thermalization, Phys. Rev. Lett., 112, 011601, (2014)
[14] Asplund, CT; Bernamonti, A.; Galli, F.; Hartman, T., Entanglement scrambling in 2d conformal field theory, JHEP, 09, 110, (2015) · Zbl 1388.83165
[15] Wit, B.; Hoppe, J.; Nicolai, H., On the quantum mechanics of supermembranes, Nucl. Phys., B 305, 545, (1988) · Zbl 1156.81457
[16] Banks, T.; Fischler, W.; Shenker, SH; Susskind, L., M theory as a matrix model: a conjecture, Phys. Rev., D 55, 5112, (1997) · Zbl 1156.81433
[17] Polchinski, J., M-theory and the light cone, Prog. Theor. Phys. Suppl., 134, 158, (1999)
[18] Itzhaki, N.; Maldacena, JM; Sonnenschein, J.; Yankielowicz, S., Supergravity and the large N limit of theories with sixteen supercharges, Phys. Rev., D 58, 046004, (1998)
[19] Sekino, Y.; Yoneya, T., Generalized AdS-CFT correspondence for matrix theory in the large-N limit, Nucl. Phys., B 570, 174, (2000) · Zbl 0951.81057
[20] Wiseman, T.; Withers, B., Holographic renormalization for coincident dp-branes, JHEP, 10, 037, (2008) · Zbl 1245.81230
[21] Kanitscheider, I.; Skenderis, K.; Taylor, M., Precision holography for non-conformal branes, JHEP, 09, 094, (2008) · Zbl 1245.81187
[22] Sekino, Y.; Susskind, L., Fast scramblers, JHEP, 10, 065, (2008)
[23] Anagnostopoulos, KN; Hanada, M.; Nishimura, J.; Takeuchi, S., Monte Carlo studies of supersymmetric matrix quantum mechanics with sixteen supercharges at finite temperature, Phys. Rev. Lett., 100, 021601, (2008)
[24] Catterall, S.; Wiseman, T., Black hole thermodynamics from simulations of lattice Yang-Mills theory, Phys. Rev., D 78, 041502, (2008)
[25] Hanada, M.; Hyakutake, Y.; Nishimura, J.; Takeuchi, S., Higher derivative corrections to black hole thermodynamics from supersymmetric matrix quantum mechanics, Phys. Rev. Lett., 102, 191602, (2009)
[26] Catterall, S.; Wiseman, T., Extracting black hole physics from the lattice, JHEP, 04, 077, (2010) · Zbl 1272.83046
[27] D. Kadoh and S. Kamata, Gauge/gravity duality and lattice simulations of one dimensional SYM with sixteen supercharges, arXiv:1503.08499 [INSPIRE].
[28] Filev, VG; O’Connor, D., The BFSS model on the lattice, JHEP, 05, 167, (2016)
[29] Smilga, AV, Comments on thermodynamics of supersymmetric matrix models, Nucl. Phys., B 818, 101, (2009) · Zbl 1194.81218
[30] Wiseman, T., On black hole thermodynamics from super Yang-Mills, JHEP, 07, 101, (2013) · Zbl 1342.83435
[31] Morita, T.; Shiba, S.; Wiseman, T.; Withers, B., Warm p-soup and near extremal black holes, Class. Quant. Grav., 31, 085001, (2014) · Zbl 1291.81336
[32] Morita, T.; Shiba, S.; Wiseman, T.; Withers, B., Moduli dynamics as a predictive tool for thermal maximally supersymmetric Yang-Mills at large N, JHEP, 07, 047, (2015) · Zbl 1388.83486
[33] Hübener, R.; Sekino, Y.; Eisert, J., Equilibration in low-dimensional quantum matrix models, JHEP, 04, 166, (2015) · Zbl 1388.81014
[34] Asplund, CT; Berenstein, D.; Dzienkowski, E., Large N classical dynamics of holographic matrix models, Phys. Rev., D 87, 084044, (2013)
[35] Aoki, S.; Hanada, M.; Iizuka, N., Quantum black hole formation in the BFSS matrix model, JHEP, 07, 029, (2015) · Zbl 1388.83369
[36] Gur-Ari, G.; Hanada, M.; Shenker, SH, Chaos in classical D0-brane mechanics, JHEP, 02, 091, (2016)
[37] Asplund, C.; Berenstein, D.; Trancanelli, D., Evidence for fast thermalization in the plane-wave matrix model, Phys. Rev. Lett., 107, 171602, (2011)
[38] Iizuka, N.; Kabat, D.; Roy, S.; Sarkar, D., Black hole formation at the correspondence point, Phys. Rev., D 87, 126010, (2013)
[39] Iizuka, N.; Kabat, D.; Roy, S.; Sarkar, D., Black hole formation in fuzzy sphere collapse, Phys. Rev., D 88, 044019, (2013)
[40] Horowitz, GT; Iqbal, N.; Santos, JE, Simple holographic model of nonlinear conductivity, Phys. Rev., D 88, 126002, (2013)
[41] Bhattacharyya, S.; Minwalla, S., Weak field black hole formation in asymptotically AdS spacetimes, JHEP, 09, 034, (2009)
[42] Jevicki, A.; Kazama, Y.; Yoneya, T., Generalized conformal symmetry in D-brane matrix models, Phys. Rev., D 59, 066001, (1999)
[43] Jevicki, A.; Yoneya, T., Space-time uncertainty principle and conformal symmetry in D-particle dynamics, Nucl. Phys., B 535, 335, (1998) · Zbl 1080.81602
[44] Yoneya, T., Generalized conformal symmetry and oblique AdS/CFT correspondence for matrix theory, Class. Quant. Grav., 17, 1307, (2000) · Zbl 0952.81029
[45] Strominger, A., Ads_{2} quantum gravity and string theory, JHEP, 01, 007, (1999) · Zbl 0965.81097
[46] Maldacena, JM; Michelson, J.; Strominger, A., Anti-de Sitter fragmentation, JHEP, 02, 011, (1999) · Zbl 0956.83052
[47] Almheiri, A.; Polchinski, J., Models of ads_{2} backreaction and holography, JHEP, 11, 014, (2015) · Zbl 1388.83079
[48] Jensen, K., Chaos in ads_{2} holography, Phys. Rev. Lett., 117, 111601, (2016)
[49] J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional nearly anti-de-Sitter space, Prog. Theor. Exp. Phys.2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE]. · Zbl 1361.81112
[50] Engelsöy, J.; Mertens, TG; Verlinde, H., An investigation of ads_{2} backreaction and holography, JHEP, 07, 139, (2016) · Zbl 1390.83104
[51] D. Grumiller, J. Salzer and D. Vassilevich, Aspects of AdS_{2}holography with non-constant dilaton, arXiv:1607.06974 [INSPIRE]. · Zbl 1386.83102
[52] Cvetič, M.; Papadimitriou, I., Ads_{2} holographic dictionary, JHEP, 12, 008, (2016) · Zbl 1390.83186
[53] Rees, BC, Holographic renormalization for irrelevant operators and multi-trace counterterms, JHEP, 08, 093, (2011) · Zbl 1298.81202
[54] Skenderis, K., Lecture notes on holographic renormalization, Class. Quant. Grav., 19, 5849, (2002) · Zbl 1044.83009
[55] Ortiz, T.; Samtleben, H.; Tsimpis, D., Matrix model holography, JHEP, 12, 096, (2014)
[56] Matsuo, Y.; Sasai, Y.; Sekino, Y., Linear responses of D0-branes via gauge/gravity correspondence, Phys. Rev., D 88, 026020, (2013)
[57] Sekino, Y., Supercurrents in matrix theory and the generalized AdS/CFT correspondence, Nucl. Phys., B 602, 147, (2001) · Zbl 1097.81728
[58] Boonstra, HJ; Skenderis, K.; Townsend, PK, The domain wall/QFT correspondence, JHEP, 01, 003, (1999) · Zbl 0965.81078
[59] Skenderis, K., Black holes and branes in string theory, Lect. Notes Phys., 541, 325, (2000) · Zbl 0973.83054
[60] Horowitz, GT; Strominger, A., Black strings and P-branes, Nucl. Phys., B 360, 197, (1991)
[61] Peet, AW; Polchinski, J., UV/IR relations in AdS dynamics, Phys. Rev., D 59, 065011, (1999)
[62] Hanada, M.; Nishimura, J.; Sekino, Y.; Yoneya, T., Direct test of the gauge-gravity correspondence for matrix theory correlation functions, JHEP, 12, 020, (2011) · Zbl 1306.81107
[63] Taylor, W.; Raamsdonk, M., Multiple D0-branes in weakly curved backgrounds, Nucl. Phys., B 558, 63, (1999) · Zbl 1068.81582
[64] Kabat, DN; Taylor, W., Linearized supergravity from matrix theory, Phys. Lett., B 426, 297, (1998) · Zbl 1049.83533
[65] Freund, PGO; Rubin, MA, Dynamics of dimensional reduction, Phys. Lett., B 97, 233, (1980)
[66] Duncan, MJ; Jensen, LG, Four forms and the vanishing of the cosmological constant, Nucl. Phys., B 336, 100, (1990)
[67] Groh, K.; Louis, J.; Sommerfeld, J., Duality and couplings of 3-form-multiplets in N = 1 supersymmetry, JHEP, 05, 001, (2013)
[68] Son, DT; Starinets, AO, Minkowski space correlators in AdS/CFT correspondence: recipe and applications, JHEP, 09, 042, (2002)
[69] Herzog, CP; Son, DT, Schwinger-Keldysh propagators from AdS/CFT correspondence, JHEP, 03, 046, (2003)
[70] Skenderis, K.; Rees, BC, Real-time gauge/gravity duality, Phys. Rev. Lett., 101, 081601, (2008) · Zbl 1228.81244
[71] Skenderis, K.; Rees, BC, Real-time gauge/gravity duality: prescription, renormalization and examples, JHEP, 05, 085, (2009)
[72] Balasubramanian, V.; etal., Thermalization of the spectral function in strongly coupled two dimensional conformal field theories, JHEP, 04, 069, (2013) · Zbl 1342.81476
[73] David, JR; Khetrapal, S., Thermalization of Green functions and quasinormal modes, JHEP, 07, 041, (2015) · Zbl 1388.83219
[74] Y.-Z. Chu, TensoriaCalc package for Mathematica, http://www.stargazing.net/yizen/Tensoria.html.
[75] Horowitz, GT; Hubeny, VE, Quasinormal modes of AdS black holes and the approach to thermal equilibrium, Phys. Rev., D 62, 024027, (2000)
[76] K.D. Kokkotas and B.G. Schmidt, Quasinormal modes of stars and black holes, Living Rev. Rel.2 (1999) 2 [gr-qc/9909058] [INSPIRE]. · Zbl 1245.81230
[77] Konoplya, RA; Zhidenko, A., Quasinormal modes of black holes: from astrophysics to string theory, Rev. Mod. Phys., 83, 793, (2011)
[78] Berti, E.; Cardoso, V.; Starinets, AO, Quasinormal modes of black holes and black branes, Class. Quant. Grav., 26, 163001, (2009) · Zbl 1173.83001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.