×

Minkowski type inequality for fuzzy and pseudo-integrals. (English) Zbl 1388.26014

Summary: One of the famous mathematical inequality is Minkowski’s inequality. It is an important inequality from both mathematical and application points of view. In this paper, a Minkowski type inequality for fuzzy and pseudo-integrals is studied. The established results are based on the classical Minkowski’s inequality for integrals.

MSC:

26D15 Inequalities for sums, series and integrals
26E50 Fuzzy real analysis
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] H. Agahi, M. A. Yaghoobi, A minkowski type inequality for fuzzy integrals, Journal of Uncertain Systems 4(3) (2010), 187-194. · Zbl 1200.26038
[2] H. Agahi, Y. Ouyang, R. Mesiar, E. Pap, M. Štrboja, Hölder and Minkowski type inequalities for pseudo-integral, Applied Mathematics and Computation 217 (2011), 8630-8639. · Zbl 1217.26039
[3] L. Bougoffa, On Minkowski and Hardy integral inequalities, Journal of Inequalities in Pure and Applied Mathematics 7(2) (2006), article 60. · Zbl 1132.26007
[4] T. Y. Chen, H. L. Chang, G. H. Tzeng, Using fuzzy measures and habitual domains to analyze the public attitude and apply to the gas taxi policy, European Journal of Operational Research 137 (2002), 145-161. · Zbl 1003.90514
[5] B. Daraby, A Convolution type inequality for pseudo-integrals, Acta Universitatis Apuensis, No. 48 (2016), 27-35.
[6] B. Daraby, Results of the Chebyshev type inequality for pseudo-integral, Vol. 4, No. 1 (2016), 91-100.
[7] B. Daraby, Generalization of the Stolarsky type inequality for pseudo-integrals, Fuzzy Sets and Systems 194 (2012), 90-96. · Zbl 1253.28011
[8] B. Daraby, L. Arabi, Related Fritz Carlson type inequality for Sugeno integrals, Soft computing, DOI: 10.1007/s00500-013-1024-8., 17 (2013), 1745-1750. · Zbl 1326.28016
[9] B. Daraby, H. Ghazanfary Asll, I. Sadeqi, General related inequalities to Carlson-type inequality for the Sugeno integral, Applied Mathematics and Computation, 305 (2017), 323-329. · Zbl 1389.35016
[10] B. Daraby, H. Ghazanfary Asll, L. Sadeqi, Gronwall’s inequality for pseudo-integral, Analele Universitatii Oradea Fasc. Mathematics, Tom XXIV (2017), Issue No. 1, 67-74. · Zbl 1389.35016
[11] B. Daraby, A. Shaffloo, A. Rahimi, Generalizations of the Feng Qi type inequality for pseudointegrals, Gazi University Journal of Science, 28(4)(2015), 695-702.
[12] A. Flores-Franuliffc, H. Romffan-Flores, A Chebyshev type inequality for fuzzy integrals, Applied Mathematics and Computation 190 (2007), 1178-1184. · Zbl 1129.26021
[13] S. G. Krantz, Jensen’s Inequality, ] 9.1.3 in Handbook of Complex Variables, Boston, MA: Birkhäuser, 119, 1999.
[14] W. Kuich, Semiring, Automata, Languages, Springer-verlag, Berlin, (1986).
[15] J.-Y. Lu , K.-S. Wu, J.-C. Lin, Fast full search in motion estimation by hierarchical use of Minkowski’s inequality, Pattern Recognition 31 (1998), 945-952.
[16] R. Mesiar, E. Pap, Idempotent integral as limit of g-integrals, Fuzzy Sets and Systems 102 (1999), 385-392. · Zbl 0953.28010
[17] R. Mesiar, Y. Ouyang, general Chebyshev type inequalities for Sugeno integrals, Fuzzy Sets and Systems 160 (2009), 58-64. · Zbl 1183.28035
[18] R. Mesiar, E. Pap, Idempotent integral as limit of g-integrals, Fuzzy Sets and Systems 102 (1999), 385-392. · Zbl 0953.28010
[19] H. Minkowski, Geometrie der Zahlen, Teubner, Leipzig, 1910. · JFM 41.0239.03
[20] C. Mortici and H. M. Srivastava, Estimates for the arctangnt function related to Shafer’s inequality, Colloq. Math. 136 (2014), 263-27. · Zbl 1305.26010
[21] Y. Ouyang, J. Fang, L. Wang, Fuzzy Chebyshev type inequality, Internatinal Journal of Approximate Reasoning 48 (2008), 829-835. · Zbl 1185.28025
[22] U. M,özkan, M. Z. Sarikaya, H. Yildirim, Extensions of certain integral inequalities on time scales, Applied Mathematics Letters 21 (2008), 993-1000. · Zbl 1168.26316
[23] E. Pap, An integral generated by decomposable measure, Univ. Novom Sadu Zb. Rad. Prirod. -Mat. Fak. Ser. Mat. 20(1) (1990), 135-144. · Zbl 0754.28002
[24] E. Pap, Null-additive Set Functions, Kluwer, Dordrecht, 1995. · Zbl 0856.28001
[25] E. Pap, M. Štrboja, Generalization of the Jensen inequality for pseudo-integral, Information Sciences 180 (2010), 543-548. · Zbl 1183.26039
[26] D. Ralescu, G. Adams, The fuzzy integral, Journal of Mathematical Analysis and Applications 75 (1980), 562-570. · Zbl 0438.28007
[27] H. Romn-Flores, A. Flores-Franuliffc, Y. Chalco-Cano, The fuzzy integral for monotone functions, Applied Mathematics and Computation 185 (2007) 492-498. · Zbl 1116.26024
[28] H. Romffan-Flores, H, Y. Chalco-Cano, Sugeno integral and geometric inequalities, International Journal of Uncertainity, Fuzziness and Knowledge-Based Systtem 15 (2007), 1-11. · Zbl 1118.28012
[29] H. Romffan-Flores, A. Flores-Franuliffc, Y. Chalco-Cano, A Jensen type inequality for fuzzy integrals, Information Sciences 177 (2007), 3192-3201. · Zbl 1127.28013
[30] H. Romffan-Flores, A. Flores-Franuliffc, Y. Chalco-Cano, A convolution type inequality for fuzzy integrals, Applied Mathematics and Computation 195 (2008), 94-99. · Zbl 1149.26033
[31] H. Romffan-Flores, A. Flores-Franuliffc, Y. Chalco-Cano, A note on fuzzy integral inequality of Stolarsky type, Applied Mathematics and Computation 196 (2008), 55-59. · Zbl 1134.26007
[32] W. Rudin, Principles of Mathematical Analysis, 3rd Edition, McGraw-Hill, New York, 1976. · Zbl 0346.26002
[33] W. Rudin, Real and Complex Analysis, 3rd Edition, McGraw-Hill, New York, 1987. · Zbl 0925.00005
[34] H. M. Srivastava, K.-L. Tseng, S.-J. Tseng and J.-C. Lo, Some generalizations of Maroni’s inequalities on time scales, Math. Inequal. Appl. 14 (2014), 469-480. · Zbl 1217.26069
[35] H. M. Srivastava, K.-L. Tseng, S.-J. Tseng and J.-C. Lo, Some weighted Opial-type inequalities on time scales, Taiwanese J. Math. 14 (2010), 107-122. · Zbl 1190.26027
[36] H. M. Srivastava, Z,-H. Zhang and Y.-D. Wu, Some further reffnements and extensions of the Hermite-Hadamard and Jensen inequalities in sevral variables, Math. Cmput. Model. 54 (2011), 2709-2717. · Zbl 1235.26016
[37] M. Sugeno, Theory of fuzzy integrals and its applications, Ph.D. thesis. Tokyo Institute of Technology 1974.
[38] Y. L. Tong, Relationship between stochastic inequalities and some classical mathematical inequalities, J. Inequal. Appl. 1 (1997), 85-98. · Zbl 0882.60015
[39] T. Tunffc, M. Z. Sarikaya and H. M. Srivastava, Some generalized Steffensen’s inequalties via a new identity for local fractional integrals, Internat. J. Anal. Appl. 13 (2017), 98-107.
[40] Z. Wang, G. Klir, Fuzzy Measure Theory, Plenum Press, New York, 1992. · Zbl 0812.28010
[41] W.Wei, H. M. Srivastava, Y. Zhang. L.Wang, P. Shen and J. Zhang, A local fractional integral inequality on fractal space analogous to Anderson’s Inequality, Abstr. Appl. Anal. 2014 (2014), Article ID 797561, 1-7.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.