×

Effective nonvanishing for Fano weighted complete intersections. (English) Zbl 1390.14144

Let \(\mathbb{P}=\mathbb{P}(a_0,\dots,a_n)\) be a weighted projective space and \(X=X_{d_1, \dots, d_c} \subset \mathbb{P}\) a well-formed (codimension in \(X\) of its intersection with the singular locus of \(\mathbb{P}\) bigger than \(1\)) quasismooth (singularities of \(X\) are just those of \(\mathbb{P}\) on \(X\)) complete intersection. The main result of the paper (see Theorem 1.2) states that if \(X\) is not a linear cone and Fano or Calabi-Yau then any ample Cartier divisor \(H\) on \(X\) is effective, that is \(|H| \neq \emptyset\). Furthermore, if \(X\) is smooth, the number of weights equal to one is at least the codimension and the general element of \(|\mathcal{O}_X(1)|\) is smooth; moreover a description of the base locus of this last linear system is provided (see Remark 5.5). In the particular case \(X\) being a hypersurface (see Theorem 1.3) it is shown that for \(H\) ample and Cartier, if \(H-K_X\) is ample then \(|H|\) is nonempty (positive partial result on Ambro-Kawamata Conjecture, see Conjecture 1.1). Moreover, also for hypersurfaces, \(X\) Gorenstein and \(H\) ample then \(K_X+mH\) is globally generated when \(m \geq n\) (Fujita’s freenes conjecture in this particular setup).

MSC:

14M10 Complete intersections
11D04 Linear Diophantine equations
14J45 Fano varieties
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] 10.1007/BF02367253 · Zbl 0948.14033
[2] 10.1080/00927872.2012.677079 · Zbl 1288.14029
[3] ; Beltrametti, The adjunction theory of complex projective varieties. de Gruyter Expositions in Mathematics, 16 (1995) · Zbl 0845.14003
[4] 10.2307/2371684 · Zbl 0061.06801
[5] 10.1515/crll.1962.211.215
[6] ; Broustet, Adv. Geom., 10, 737 (2010)
[7] ; Call, Commutative algebra: syzygies, multiplicities, and birational algebra. Contemp. Math., 159, 15 (1994)
[8] ; Chen, Int. Math. Res. Not., 2015, 3793 (2015)
[9] 10.1090/S1056-3911-10-00542-4 · Zbl 1260.14060
[10] ; Corti, Explicit birational geometry of 3-folds. London Math. Soc. Lecture Note Ser., 281, 175 (2000) · Zbl 0942.00009
[11] ; Dimca, J. Reine Angew. Math., 366, 184 (1986)
[12] ; Dolgachev, Group actions and vector fields. Lecture Notes in Math., 956, 34 (1982)
[13] 10.1090/S0894-0347-1993-1207013-5
[14] ; Fulton, Introduction to toric varieties. Annals of Mathematics Studies, 131 (1993) · Zbl 0813.14039
[15] 10.1090/S1056-3911-2011-00573-0 · Zbl 1253.14007
[16] 10.4310/PAMQ.2011.v7.n4.a13 · Zbl 1316.14022
[17] 10.1017/CBO9780511758942
[18] 10.4153/CJM-1960-033-6 · Zbl 0096.02803
[19] ; Johnson, Experiment. Math., 10, 151 (2001)
[20] 10.1007/s002080050085 · Zbl 0909.14001
[21] 10.4310/AJM.2000.v4.n1.a11 · Zbl 1060.14505
[22] ; Geometry of complex projective varieties. Seminars and Conferences, 9, 321 (1993)
[23] 10.1215/kjm/1250523007 · Zbl 0332.14019
[24] ; Reid, Journées de Géometrie Algébrique, 273 (1980)
[25] 10.1090/pspum/046.1/927963
[26] 10.2307/2007055 · Zbl 0663.14010
[27] 10.1093/imrn/rnt116 · Zbl 1310.14019
[28] ; Shokurov, Izv. Akad. Nauk SSSR Ser. Mat., 43, 430 (1979)
[29] ; Xie, Proc. Amer. Math. Soc., 137, 61 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.