zbMATH — the first resource for mathematics

Local energy-momentum conservation in scalar-tensor-like gravity with generic curvature invariants. (English) Zbl 1381.83111
Summary: For a large class of scalar-tensor-like gravity whose action contains nonminimal couplings between a scalar field \(\phi (x^\alpha )\) and generic curvature invariants \(\left\{ {\mathcal {R}}\right\} \) beyond the Ricci scalar \(R=R^\alpha _{\;\;\alpha }\), we prove the covariant invariance of its field equation and confirm/prove the local energy-momentum conservation. These \(\phi (x^\alpha )-{\mathcal {R}}\) coupling terms break the symmetry of diffeomorphism invariance under an active transformation, which implies that the solutions to the field equation should satisfy the consistency condition \({\mathcal {R}}\equiv 0\) when \(\phi (x^\alpha )\) is nondynamical and massless. Following this fact and based on the accelerated expansion of the observable Universe, we propose a primary test to check the viability of the modified gravity to be an effective dark energy, and a simplest example passing the test is the “Weyl/conformal dark energy”.
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C40 Gravitational energy and conservation laws; groups of motions
53Z05 Applications of differential geometry to physics
85A40 Cosmology
CosmoMC; NP; NPspinor
Full Text: DOI
[1] Hamity, VH; Barraco, DE, First order formalism of \(f(R)\) gravity, Gen. Relativ. Gravit., 25, 461-471, (1993) · Zbl 0778.53055
[2] Wang, P; Kremer, GM; Alves, DSM; Meng, X-H, A note on energy-momentum conservation in Palatini formulation of \(L(R)\) gravity, Gen. Relativ. Gravit., 38, 517-521, (2006) · Zbl 1093.83039
[3] Koivisto, T, A note on covariant conservation of energymomentum in modified gravities, Class. Quantum Grav., 23, 4289-4296, (2006) · Zbl 1096.83056
[4] Hehl, FW; McCrea, JD, Bianchi identities and the automatic conservation of energy-momentum and angular momentum in general-relativistic field theories, Found. Phys., 16, 267-293, (1986)
[5] Puetzfeld, D; Obukhov, YN, Covariant equations of motion for test bodies in gravitational theories with general nonminimal coupling, Phys. Rev. D, 87, 044045, (2013)
[6] Obukhov, YN; Puetzfeld, D, Conservation laws in gravitational theories with general nonminimal coupling, Phys. Rev. D, 87, 081502, (2013)
[7] Booth, I, Lessons from \(f(R, R_c^2, R_m^2,{{L}}_m)\) gravity: smooth Gauss-Bonnet limit, energy-momentum conservation, and nonminimal coupling, Phys. Rev. D, 90, 024059, (2014)
[8] Al-Rawaf, AS; Taha, MO, Cosmology of general relativity without energy-momentum conservation, Gen. Relativ. Gravit., 28, 935-952, (1996) · Zbl 0875.83034
[9] Duan, Y-S; Liu, J-C; Dong, X-G, General covariant energy-momentum conservation law in general spacetime, Gen. Relativ. Gravit., 20, 485-496, (1988)
[10] Bak, D; Cangemi, D; Jackiw, R, Energy-momentum conservation in general relativity, Phys. Rev. D, 49, 5173-5181, (1994)
[11] Lompay, RR; Petrov, AN, Covariant differential identities and conservation laws in metric-torsion theories of gravitation. I. general consideration, J. Math. Phys., 54, 062504, (2013) · Zbl 1285.83017
[12] Lompay, RR; Petrov, AN, Covariant differential identities and conservation laws in metric-torsion theories of gravitation. II. manifestly generally covariant theories, J. Math. Phys., 54, 102504, (2013) · Zbl 1288.83035
[13] Brans, C; Dicke, RH, Mach’s principle and a relativistic theory of gravitation, Phys. Rev., 124, 925-935, (1961) · Zbl 0103.21402
[14] Jackiw, R; Pi, SY, Chern-Simons modification of general relativity, Phys. Rev. D, 68, 104012, (2003)
[15] Nojiri, S; Odintsov, SD; Sasaki, M, Gauss-Bonnet dark energy, Phys. Rev. D, 71, 123509, (2005)
[16] Harvey, A, On the algebraic invariants of the four-dimensional Riemann tensor, Class. Quantum Grav., 7, 715-716, (1990) · Zbl 0693.53033
[17] Carminati, J; McLenaghan, RG, Algebraic invariants of the Riemann tensor in a four-dimensional Lorentzian space, J. Math. Phys., 32, 3135-3140, (1991) · Zbl 0736.76081
[18] Eddington, A.S.: The Mathematical Theory of Relativity, 2nd edn. Sections 61 and 62. Cambridge University Press, London (1924)
[19] Magnano, G; Sokolowski, LM, Physical equivalence between nonlinear gravity theories and a general-relativistic self-gravitating scalar field, Phys. Rev. D, 50, 5039-5059, (1994)
[20] Bluhm, R, Explicit versus spontaneous diffeomorphism breaking in gravity, Phys. Rev. D, 91, 065034, (2015)
[21] Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W. H. Freeman Publisher, San Francisco (1973)
[22] Accioly, AJ; Azeredo, AD; Aragao, CML; Mukai, H, A simple prescription for computing the stress-energy tensor, Class. Quantum Grav., 14, 1163-1166, (1997) · Zbl 0874.53061
[23] Magnano, G; Sokolowski, LM, Can the local stress-energy conservation laws be derived solely from field equations?, Gen. Relativ. Gravit., 30, 1281-1288, (1998) · Zbl 0941.83015
[24] Ortín, T.: Gravity and Strings. Cambridge University Press, Cambridge (2007) · Zbl 1057.83003
[25] Lewis, A; Bridle, S, Cosmological parameters from CMB and other data: a Monte-Carlo approach, Phys. Rev. D, 66, 103511, (2002)
[26] Deser, S; Jackiw, R; Templeton, S, Three-dimensional massive gauge theories, Phys. Rev. Lett., 48, 975-978, (1982)
[27] Tian, D.W., Booth, I.: Lovelock-Brans-Dicke gravity. Class. Quantum Grav. 33, 045001 (2016). doi:10.1088/0264-9381/33/4/045001. arXiv:1502.05695 · Zbl 1338.83161
[28] Fiziev, PP, A minimal realistic model of dilatonic gravity, Mod. Phys. Lett. A, 15, 1977, (2000) · Zbl 1009.83035
[29] Mignemi, S; Stewart, NR, Charged black holes in effective string theory, Phys. Rev. D, 47, 5259-5269, (1993)
[30] Kanti, P; Mavromatos, NE; Rizos, J; Tamvakis, K; Winstanley, E, Dilatonic black holes in higher curvature string gravity, Phys. Rev. D, 54, 5049-5058, (1996) · Zbl 0900.70240
[31] Faraoni, V.: Cosmology in Scalar-Tensor Gravity. Kluwer Academic Publishers, Dordrecht (2004) · Zbl 1057.83002
[32] Fujii, Y., Maeda, K.-I.: The Scalar-Tensor Theory of Gravitation. Cambridge University Press, Cambridge (2004) · Zbl 1079.83023
[33] Harko, T; Koivisto, TS; Lobo, FSN; Olmo, GJ, Metric-Palatini gravity unifying local constraints and late-time cosmic acceleration, Phys. Rev. D, 85, 084016, (2012)
[34] Padmanabhan, T.: Gravitation: Foundations and Frontiers. Section 6.5, Gravitational Energy-Momentum Pseudo-Tensor, pp. 279-288. Cambridge University Press, Cambridge (2010) · Zbl 1187.83002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.