×

Cuts of Feynman integrals in Baikov representation. (English) Zbl 1378.81039

Summary: Based on the Baikov representation, we present a systematic approach to compute cuts of Feynman integrals, appropriately defined in d dimensions. The information provided by these computations may be used to determine the class of functions needed to analytically express the full integrals.

MSC:

81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry
81V05 Strong interaction, including quantum chromodynamics
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Feynman, RP, Space-time approach to quantum electrodynamics, Phys. Rev., 76, 769, (1949) · Zbl 0038.13302
[2] Dyson, FJ, The radiation theories of Tomonaga, Schwinger and Feynman, Phys. Rev., 75, 486, (1949) · Zbl 0032.23702
[3] Dyson, FJ, The S matrix in quantum electrodynamics, Phys. Rev., 75, 1736, (1949) · Zbl 0033.14201
[4] G. ’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys.B 44 (1972) 189 [INSPIRE].
[5] T. Gehrmann, J.M. Henn and N.A. Lo Presti, Analytic form of the two-loop planar five-gluon all-plus-helicity amplitude in QCD, Phys. Rev. Lett.116 (2016) 062001 [Erratum ibid.116 (2016) 189903] [arXiv:1511.05409] [INSPIRE]. · Zbl 1356.81169
[6] Papadopoulos, CG; Tommasini, D.; Wever, C., The pentabox master integrals with the simplified differential equations approach, JHEP, 04, 078, (2016)
[7] S. Borowka, G. Heinrich, S.P. Jones, M. Kerner, J. Schlenk and T. Zirke, SecDec-3\(.\)0: numerical evaluation of multi-scale integrals beyond one loop, Comput. Phys. Commun.196 (2015) 470 [arXiv:1502.06595] [INSPIRE]. · Zbl 1360.81013
[8] J.R. Andersen et al., Les Houches 2013: physics at TeV colliders — Standard Model working group report, arXiv:1405.1067 [INSPIRE].
[9] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys.B 435 (1995) 59 [hep-ph/9409265] [INSPIRE]. · Zbl 1049.81644
[10] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop N point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys.B 425 (1994) 217 [hep-ph/9403226] [INSPIRE]. · Zbl 1049.81644
[11] Berger, CF; etal., An automated implementation of on-shell methods for one-loop amplitudes, Phys. Rev., D 78, 036003, (2008)
[12] G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys.B 763 (2007) 147 [hep-ph/0609007] [INSPIRE]. · Zbl 1116.81067
[13] Ossola, G.; Papadopoulos, CG; Pittau, R., On the rational terms of the one-loop amplitudes, JHEP, 05, 004, (2008)
[14] SM MC Working Group, SM and NLO MULTILEG Working Group collaborations, J. Alcaraz Maestre et al., The SM and NLO Multileg and SM MC working groups: summary report, arXiv:1203.6803 [INSPIRE].
[15] Ellis, RK; Kunszt, Z.; Melnikov, K.; Zanderighi, G., One-loop calculations in quantum field theory: from Feynman diagrams to unitarity cuts, Phys. Rept., 518, 141, (2012)
[16] Deurzen, H.; Luisoni, G.; Mastrolia, P.; Ossola, G.; Zhang, Z., Automated computation of scattering amplitudes from integrand reduction to Monte Carlo tools, Nucl. Part. Phys. Proc., 267-269, 140, (2015)
[17] Gluza, J.; Kajda, K.; Kosower, DA, Towards a basis for planar two-loop integrals, Phys. Rev., D 83, 045012, (2011)
[18] Kosower, DA; Larsen, KJ, Maximal unitarity at two loops, Phys. Rev., D 85, 045017, (2012)
[19] Caron-Huot, S.; Larsen, KJ, Uniqueness of two-loop master contours, JHEP, 10, 026, (2012)
[20] Johansson, H.; Kosower, DA; Larsen, KJ, Two-loop maximal unitarity with external masses, Phys. Rev., D 87, 025030, (2013)
[21] H. Johansson, D.A. Kosower and K.J. Larsen, An overview of maximal unitarity at two loops, arXiv:1212.2132 [INSPIRE].
[22] Johansson, H.; Kosower, DA; Larsen, KJ, Maximal unitarity for the four-mass double box, Phys. Rev., D 89, 125010, (2014)
[23] Søgaard, M.; Zhang, Y., Multivariate residues and maximal unitarity, JHEP, 12, 008, (2013) · Zbl 1342.81319
[24] Ita, H., Two-loop integrand decomposition into master integrals and surface terms, Phys. Rev., D 94, 116015, (2016)
[25] H. Jo hansson, D.A. Kosower, K.J. Larsen and M. Søgaard, Cross-order integral relations from maximal cuts, Phys. Rev.D 92 (2015) 025015 [arXiv:1503.06711] [INSPIRE].
[26] Mastrolia, P.; Peraro, T.; Primo, A., Adaptive integrand decomposition in parallel and orthogonal space, JHEP, 08, 164, (2016) · Zbl 1390.81180
[27] Mastrolia, P.; Ossola, G., On the integrand-reduction method for two-loop scattering amplitudes, JHEP, 11, 014, (2011) · Zbl 1306.81357
[28] Badger, S.; Frellesvig, H.; Zhang, Y., Hepta-cuts of two-loop scattering amplitudes, JHEP, 04, 055, (2012) · Zbl 1348.81340
[29] Mastrolia, P.; Mirabella, E.; Ossola, G.; Peraro, T., Integrand-reduction for two-loop scattering amplitudes through multivariate polynomial division, Phys. Rev., D 87, 085026, (2013) · Zbl 1331.81218
[30] Badger, S.; Frellesvig, H.; Zhang, Y., A two-loop five-gluon helicity amplitude in QCD, JHEP, 12, 045, (2013)
[31] C. Papadopoulos, R. Kleiss and I. Malamos, Reduction at the integrand level beyond NLO, PoS(Corfu2012)019 [INSPIRE].
[32] Badger, S.; Mogull, G.; Ochirov, A.; O’Connell, D., A complete two-loop, five-gluon helicity amplitude in Yang-Mills theory, JHEP, 10, 064, (2015) · Zbl 1388.81274
[33] Chetyrkin, KG; Tkachov, FV, integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys., B 192, 159, (1981)
[34] Tkachov, FV, A theorem on analytical calculability of four loop renormalization group functions, Phys. Lett., B 100, 65, (1981)
[35] S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys.A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE]. · Zbl 0973.81082
[36] G. ’t Hooft and M.J.G. Veltman, Scalar one loop integrals, Nucl. Phys.B 153 (1979) 365 [INSPIRE].
[37] Smirnov, VA, Analytic tools for Feynman integrals, Springer Tracts Mod. Phys., 250, 1, (2012) · Zbl 1268.81004
[38] Bogner, C.; Weinzierl, S., Feynman graph polynomials, Int. J. Mod. Phys., A 25, 2585, (2010) · Zbl 1193.81072
[39] Hepp, K., Proof of the bogolyubov-parasiuk theorem on renormalization, Commun. Math. Phys., 2, 301, (1966) · Zbl 1222.81219
[40] M. Roth and A. Denner, High-energy approximation of one loop Feynman integrals, Nucl. Phys.B 479 (1996) 495 [hep-ph/9605420] [INSPIRE]. · Zbl 0032.23702
[41] T. Binoth and G. Heinrich, An automatized algorithm to compute infrared divergent multiloop integrals, Nucl. Phys.B 585 (2000) 741 [hep-ph/0004013] [INSPIRE]. · Zbl 1042.81565
[42] T. Binoth and G. Heinrich, Numerical evaluation of multiloop integrals by sector decomposition, Nucl. Phys.B 680 (2004) 375 [hep-ph/0305234] [INSPIRE]. · Zbl 1043.81630
[43] Bogner, C.; Weinzierl, S., Resolution of singularities for multi-loop integrals, Comput. Phys. Commun., 178, 596, (2008) · Zbl 1196.81010
[44] V.A. Smirnov, Analytical result for dimensionally regularized massless on shell double box, Phys. Lett.B 460 (1999) 397 [hep-ph/9905323] [INSPIRE]. · Zbl 1388.81274
[45] J.B. Tausk, Nonplanar massless two loop Feynman diagrams with four on-shell legs, Phys. Lett.B 469 (1999) 225 [hep-ph/9909506] [INSPIRE]. · Zbl 0987.81500
[46] M. Czakon, Automatized analytic continuation of Mellin-Barnes integrals, Comput. Phys. Commun.175 (2006) 559 [hep-ph/0511200] [INSPIRE]. · Zbl 1196.81054
[47] Kotikov, AV, Differential equations method: new technique for massive Feynman diagrams calculation, Phys. Lett., B 254, 158, (1991)
[48] A.V. Kotikov, Differential equation method: the calculation of N point Feynman diagrams, Phys. Lett.B 267 (1991) 123 [Erratum ibid.B 295 (1992) 409] [INSPIRE]. · Zbl 1020.81734
[49] Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated one loop integrals, Phys. Lett.B 302 (1993) 299 [Erratum ibid.B 318 (1993) 649] [hep-ph/9212308] [INSPIRE]. · Zbl 1007.81512
[50] Remiddi, E., Differential equations for Feynman graph amplitudes, Nuovo Cim., A 110, 1435, (1997)
[51] T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys.B 580 (2000) 485 [hep-ph/9912329] [INSPIRE]. · Zbl 1071.81089
[52] Goncharov, AB, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett., 5, 497, (1998) · Zbl 0961.11040
[53] E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys.A 15 (2000) 725 [hep-ph/9905237] [INSPIRE]. · Zbl 0951.33003
[54] A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math/0103059 [INSPIRE].
[55] Henn, JM, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett., 110, 251601, (2013)
[56] Ablinger, J.; Behring, A.; Blümlein, J.; Freitas, A.; Manteuffel, A.; Schneider, C., Calculating three loop ladder and V-topologies for massive operator matrix elements by computer algebra, Comput. Phys. Commun., 202, 33, (2016) · Zbl 1348.81034
[57] Lee, RN, Reducing differential equations for multiloop master integrals, JHEP, 04, 108, (2015) · Zbl 1388.81109
[58] Meyer, C., Transforming differential equations of multi-loop Feynman integrals into canonical form, JHEP, 04, 006, (2017) · Zbl 1378.81064
[59] O. Gituliar and V. Magerya, Fuchsia: a tool for reducing differential equations for Feynman master integrals to epsilon form, arXiv:1701.04269 [INSPIRE].
[60] Adams, L.; Bogner, C.; Weinzierl, S., The two-loop sunrise integral around four space-time dimensions and generalisations of the clausen and glaisher functions towards the elliptic case, J. Math. Phys., 56, 072303, (2015) · Zbl 1320.81059
[61] Bonciani, R.; Duca, V.; Frellesvig, H.; Henn, JM; Moriello, F.; Smirnov, VA, two-loop planar master integrals for Higgs → 3 partons with full heavy-quark mass dependence, JHEP, 12, 096, (2016)
[62] P.A. Baikov, Explicit solutions of the multiloop integral recurrence relations and its application, Nucl. Instrum. Meth.A 389 (1997) 347 [hep-ph/9611449] [INSPIRE].
[63] P.A. Baikov, Explicit solutions of the three loop vacuum integral recurrence relations, Phys. Lett.B 385 (1996) 404 [hep-ph/9603267] [INSPIRE]. · Zbl 1247.81138
[64] V.A. Smirnov and M. Steinhauser, Solving recurrence relations for multiloop Feynman integrals, Nucl. Phys.B 672 (2003) 199 [hep-ph/0307088] [INSPIRE]. · Zbl 1058.81606
[65] Lee, RN, Calculating multiloop integrals using dimensional recurrence relation and D-analyticity, Nucl. Phys. Proc. Suppl., B 205-206, 135, (2010)
[66] Grozin, AG, Integration by parts: an introduction, Int. J. Mod. Phys., A 26, 2807, (2011) · Zbl 1247.81138
[67] Lee, RN; Pomeransky, AA, Critical points and number of master integrals, JHEP, 11, 165, (2013) · Zbl 1342.81139
[68] Henn, JM, Lectures on differential equations for Feynman integrals, J. Phys., A 48, 153001, (2015) · Zbl 1312.81078
[69] Primo, A.; Tancredi, L., On the maximal cut of Feynman integrals and the solution of their differential equations, Nucl. Phys., B 916, 94, (2017) · Zbl 1356.81136
[70] Larsen, KJ; Zhang, Y., Integration-by-parts reductions from unitarity cuts and algebraic geometry, Phys. Rev., D 93, 041701, (2016)
[71] A. Georgoudis, K.J. Larsen and Y. Zhang, Azurite: an algebraic geometry based package for finding bases of loop integrals, arXiv:1612.04252 [INSPIRE].
[72] Veltman, MJG, Diagrammatica: the path to Feynman rules, Cambridge Lect. Notes Phys., 4, 1, (1994)
[73] Abreu, S.; Britto, R.; Duhr, C.; Gardi, E., From multiple unitarity cuts to the coproduct of Feynman integrals, JHEP, 10, 125, (2014) · Zbl 1333.81148
[74] Abreu, S.; Britto, R.; Grönqvist, H., Cuts and coproducts of massive triangle diagrams, JHEP, 07, 111, (2015) · Zbl 1388.83151
[75] C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys.B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].
[76] Lee, RN; Smirnov, VA, The dimensional recurrence and analyticity method for multicomponent master integrals: using unitarity cuts to construct homogeneous solutions, JHEP, 12, 104, (2012) · Zbl 1397.81073
[77] Remiddi, E.; Tancredi, L., Differential equations and dispersion relations for Feynman amplitudes. the two-loop massive sunrise and the kite integral, Nucl. Phys., B 907, 400, (2016) · Zbl 1336.81038
[78] Henn, JM; Melnikov, K.; Smirnov, VA, Two-loop planar master integrals for the production of off-shell vector bosons in hadron collisions, JHEP, 05, 090, (2014)
[79] Huber, T.; Maître, D., hypexp 2, expanding hypergeometric functions about half-integer parameters, Comput. Phys. Commun., 178, 755, (2008) · Zbl 1196.81024
[80] P.F. Byrd and M.D. Friedman, Handbook of elliptic integrals for engineers and scientists, Grund. math. Wiss.67 (1971). · Zbl 0213.16602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.