zbMATH — the first resource for mathematics

Characteristic varieties of character sheaves. (English) Zbl 0683.22012
The following characterization of character sheaves is proved when the group \({\mathbb{G}}\) is defined over the complex number field \({\mathbb{C}}:\) let \({\mathbb{G}}\) be a connected complex reductive group. A \({\mathbb{G}}\)-equivariant irreducible perverse sheaf \({\mathcal F}\) on \({\mathbb{G}}\) is a character sheaf if and only if the characteristic variety of \({\mathcal F}\) lies in \({\mathbb{G}}\times {\mathcal N}\). Here \({\mathcal N}\) is the nilpotent cone in the Lie algebra of \({\mathbb{G}}\). Another characterization is also proved. Let \({\mathbb{G}}\) be a connected reductive group defined over an algebraically closed field, \(N\subset {\mathbb{G}}^ a \)maximal unipotent subgroup and \(\pi: {\mathbb{G}}\to {\mathbb{G}}/N\) the projection. Then an irreducible \({\mathbb{G}}\)-equivariant perverse sheaf \({\mathcal F}\) is a tame character sheaf if and only if \(\pi_*({\mathcal F})\) is constructible with respect to the Bruhat cells and tame.
Reviewer: M.Muro

22E47 Representations of Lie and real algebraic groups: algebraic methods (Verma modules, etc.)
14L10 Group varieties
14F10 Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials
14F40 de Rham cohomology and algebraic geometry
Full Text: DOI EuDML
[1] [BBD] Beilinson, A., Bernstein, J., Deligne, P., Faisceaux Pervers. Astérisque100 (1983)
[2] [Bi] Bien, F.: SphericalD-modules and representations of reductive Lie groups. Mass. Institute Technology Thesis (1986)
[3] [BM] Borho, W., MacPherson, R.: Partial resolutions of nilpotent varieties. In: Analyse et topologie sur les espaces singuliers. Astérisque101–102, 23–74 (1983) · Zbl 0576.14046
[4] [Br] Brylinski, J-L.: Transformations canoniques, dualité projective, théorie de Lefschetz, transformations de Fourier et sommes trigonométriques. Astérisque140–141, 3–134 (1986)
[5] [GG] Gelfand, I.M., Graev, M.I.: The geometry of homogeneous spaces, group representations and the related questions of integral geometry. Tr. Mosk. Mat. O.-va8, 250–253 (1959)
[6] [Gi1] Ginsburg, V.: Characteristic varieties and vanishing cycles. Invent. math.84, 327–402 (1986) · Zbl 0598.32013
[7] [Gi2] Ginsburg, V.: Admissible modules on a symmetric space. Preprint
[8] [KS] Kashiwara, M., Schapira, P.: Microlocal study of sheaves. Astérisque128 (1985) · Zbl 0589.32019
[9] [La1] Laumon, G.: Correspondance de Langlands géométrique pour les corps de fonctions. Duke Math. J.54 (no. 2) 309–360 (1987) · Zbl 0662.12013
[10] [La2] Laumon, G.: Cône nilpotent et variété caractéristique des faisceaux caractères de Lusztig. 1987
[11] [Lu1] Lusztig, G.: Intersection cohomology complexes on a reductive group. Invent. Math.75, 205–272 (1984) · Zbl 0547.20032
[12] [Lu2] Lusztig, G.: Character sheaves I, II, III, IV, V. Adv. Math.56, 193–237 (1985);57, 226–265 (1985), 266–315;59, 1–63 (1986);61, 103–155 (1986) · Zbl 0586.20018
[13] [Sp] Springer, T.A.: The unipotent variety of a semi-simple group. Proc. Colloq. Alg. Geom. Tata Institute, pp. 373–391 (1969)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.