Titi, Edriss S. Une variété approximante de l’attracteur universel des équations de Navier-Stokes, non linéaire, de dimension finie. (On a nonlinear finite dimensional approximative manifold to the universal attractor of the Navier-Stokes equation). (French) Zbl 0683.35073 C. R. Acad. Sci., Paris, Sér. I 307, No. 8, 383-385 (1988). Summary: We present an explicit nonlinear approximative manifold to the approximative manifold to the universal (global) attractor of the Navier- Stokes equations, of finite dimension m. In an illustrative example, we show that this manifold yields a smaller error than the flat linear manifold spanned by the first m eigenvectors of the Stokes operator. Cited in 13 Documents MSC: 35Q30 Navier-Stokes equations 35K15 Initial value problems for second-order parabolic equations 35A35 Theoretical approximation in context of PDEs Keywords:approximative manifold; universal; attractor PDF BibTeX XML Cite \textit{E. S. Titi}, C. R. Acad. Sci., Paris, Sér. I 307, No. 8, 383--385 (1988; Zbl 0683.35073) OpenURL