×

A single fractal pinwheel tile. (English) Zbl 1382.52018

Summary: The pinwheel triangle of Conway and Radin is a standard example for tilings with self-similarity and statistical circular symmetry. Many modifications were constructed, all based on partitions of triangles or rectangles. The fractal example of Frank and Whittaker requires 13 different types of tiles. We present an example of a single tile with fractal boundary and very simple geometric structure which has the same symmetry and spectral properties as the pinwheel triangle.

MSC:

52C20 Tilings in \(2\) dimensions (aspects of discrete geometry)
28A80 Fractals

Software:

IFStile
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Akiyama, Shigeki; Loridant, Beno\^\i t., Boundary parametrization of self-affine tiles, J. Math. Soc. Japan, 63, 2, 525-579 (2011) · Zbl 1226.28006
[2] Baake, Michael; Frettl\`“oh, Dirk; Grimm, Uwe, A radial analogue of Poisson”s summation formula with applications to powder diffraction and pinwheel patterns, J. Geom. Phys., 57, 5, 1331-1343 (2007) · Zbl 1185.37029
[3] Baake, Michael; Grimm, Uwe, Aperiodic order. Vol. 1, A mathematical invitation, with a foreword by Roger Penrose, Encyclopedia of Mathematics and its Applications 149, xvi+531 pp. (2013), Cambridge University Press, Cambridge · Zbl 1295.37001
[4] Bandt, Christoph, Self-similar sets. V. Integer matrices and fractal tilings of \({\bf R}^n\), Proc. Amer. Math. Soc., 112, 2, 549-562 (1991) · Zbl 0743.58027
[5] Bandt, Christoph, Self-similar tilings and patterns described by mappings. The mathematics of long-range aperiodic order, Waterloo, ON, 1995, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 489, 45-83 (1997), Kluwer Acad. Publ., Dordrecht · Zbl 0891.58018
[6] Bandt, Christoph; Graf, Siegfried, Self-similar sets. VII. A characterization of self-similar fractals with positive Hausdorff measure, Proc. Amer. Math. Soc., 114, 4, 995-1001 (1992) · Zbl 0823.28003
[7] Bandt, Christoph; Mesing, Mathias, Self-affine fractals of finite type. Convex and fractal geometry, Banach Center Publ. 84, 131-148 (2009), Polish Acad. Sci. Inst. Math., Warsaw · Zbl 1169.28005
[8] Barnsley, Michael F., Fractals everywhere, xiv+534 pp. (1993), revised with the assistance of and with a foreword by Hawley Rising, III, Academic Press Professional, Boston, MA · Zbl 0784.58002
[9] Conway, John H.; Radin, Charles, Quaquaversal tilings and rotations, Invent. Math., 132, 1, 179-188 (1998) · Zbl 0913.52009
[10] Duvall, P.; Keesling, J.; Vince, A., The Hausdorff dimension of the boundary of a self-similar tile, J. London Math. Soc. (2), 61, 3, 748-760 (2000) · Zbl 0977.28002
[11] Falconer, Kenneth, Fractal geometry, Mathematical foundations and applications, xxx+368 pp. (2014), John Wiley & Sons, Ltd., Chichester · Zbl 1285.28011
[12] Frank, Natalie Priebe; Whittaker, Michael F., A fractal version of the pinwheel tiling, Math. Intelligencer, 33, 2, 7-17 (2011) · Zbl 1235.52030
[13] Frettl\"oh, Dirk, Substitution tilings with statistical circular symmetry, European J. Combin., 29, 8, 1881-1893 (2008) · Zbl 1161.52015
[14] Gelbrich, G\"otz, Crystallographic reptiles, Geom. Dedicata, 51, 3, 235-256 (1994) · Zbl 0807.05022
[15] Gilbert, William J., The fractal dimension of sets derived from complex bases, Canad. Math. Bull., 29, 4, 495-500 (1986) · Zbl 0564.10007
[16] Goodman-Strauss, Chaim, Matching rules and substitution tilings, Ann. of Math. (2), 147, 1, 181-223 (1998) · Zbl 0941.52018
[17] Gr\"unbaum, Branko; Shephard, G. C., Tilings and patterns, xii+700 pp. (1987), W. H. Freeman and Company, New York · Zbl 0601.05001
[18] He, Xing-Gang; Lau, Ka-Sing; Rao, Hui, Self-affine sets and graph-directed systems, Constr. Approx., 19, 3, 373-397 (2003) · Zbl 1027.37012
[19] Lagarias, Jeffrey C.; Wang, Yang, Integral self-affine tiles in \(\mathbf{R}^n. I\). Standard and nonstandard digit sets, J. London Math. Soc. (2), 54, 1, 161-179 (1996) · Zbl 0893.52014
[20] Lai, Chun-Kit; Lau, Ka-Sing; Rao, Hui, Classification of tile digit sets as product-forms, Trans. Amer. Math. Soc., 369, 1, 623-644 (2017) · Zbl 1395.05034
[21] Loridant, Beno\^\i t., Crystallographic number systems, Monatsh. Math., 167, 3-4, 511-529 (2012) · Zbl 1337.11004
[22] M D. Mekhontsev, IFStile finder, https://ifstile.com.
[23] Moody, Robert V.; Postnikoff, Derek; Strungaru, Nicolae, Circular symmetry of pinwheel diffraction, Ann. Henri Poincar\'e, 7, 4, 711-730 (2006) · Zbl 1099.52007
[24] Radin, Charles, Miles of tiles, Student Mathematical Library 1, xii+120 pp. (1999), American Mathematical Society, Providence, RI · Zbl 0932.52005
[25] Radin, Charles, The pinwheel tilings of the plane, Ann. of Math. (2), 139, 3, 661-702 (1994) · Zbl 0808.52022
[26] Sadun, Lorenzo, Topology of tiling spaces, University Lecture Series 46, x+118 pp. (2008), American Mathematical Society, Providence, RI · Zbl 1166.52001
[27] Sadun, L., Some generalizations of the pinwheel tiling, Discrete Comput. Geom., 20, 1, 79-110 (1998) · Zbl 0929.52016
[28] Scheicher, Klaus; Thuswaldner, J\`“org M., Neighbours of self-affine tiles in lattice tilings. Fractals in Graz 2001, Trends Math., 241-262 (2003), Birkh\'”auser, Basel · Zbl 1040.52013
[29] Senechal, Marjorie, Quasicrystals and geometry, xvi+286 pp. (1995), Cambridge University Press, Cambridge · Zbl 0828.52007
[30] Solomyak, Boris, Dynamics of self-similar tilings, Ergodic Theory Dynam. Systems, 17, 3, 695-738 (1997) · Zbl 0884.58062
[31] Solomyak, B., Nonperiodicity implies unique composition for self-similar translationally finite tilings, Discrete Comput. Geom., 20, 2, 265-279 (1998) · Zbl 0919.52017
[32] Strichartz, Robert S.; Wang, Yang, Geometry of self-affine tiles. I, Indiana Univ. Math. J., 48, 1, 1-23 (1999) · Zbl 0938.52017
[33] Ventrella2012 J. Ventrella, Brainfilling curves - a fractal bestiary, Lulu.com, Raleigh, North Carolina, 2012. See www.fractalcurves.com. \endbiblist
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.