×

zbMATH — the first resource for mathematics

SDTRLS: predicting drug-target interactions for complex diseases based on chemical substructures. (English) Zbl 1380.93055
Summary: It is well known that drug discovery for complex diseases via biological experiments is a time-consuming and expensive process. Alternatively, the computational methods provide a low-cost and high-efficiency way for predicting Drug-Target Interactions (DTIs) from biomolecular networks. However, the current computational methods mainly deal with DTI predictions of known drugs; there are few methods for large-scale prediction of failed drugs and new chemical entities that are currently stored in some biological databases may be effective for other diseases compared with their originally targeted diseases. In this study, we propose a method (called SDTRLS) which predicts DTIs through RLS-Kron model with chemical substructure similarity fusion and Gaussian Interaction Profile (GIP) kernels. SDTRLS can be an effective predictor for targets of old drugs, failed drugs, and new chemical entities from large-scale biomolecular network databases. Our computational experiments show that SDTRLS outperforms the state-of-the-art SDTNBI method; specifically, in the G Protein-Coupled Receptors (GPCRs) external validation, the maximum and the average AUC values of SDTRLS are 0.842 and 0.826, respectively, which are superior to those of SDTNBI, which are 0.797 and 0.766, respectively. This study provides an important basis for new drug development and drug repositioning based on biomolecular networks.
MSC:
93A30 Mathematical modelling of systems (MSC2010)
93B40 Computational methods in systems theory (MSC2010)
92C50 Medical applications (general)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ashburn, T. T.; Thor, K. B., Drug repositioning: identifying and developing new uses for existing drugs, Nature Reviews Drug Discovery, 3, 8, 673-683, (2004)
[2] Novac, N., Challenges and opportunities of drug repositioning, Trends in Pharmacological Sciences, 34, 5, 267-272, (2013)
[3] Hurle, M. R.; Yang, L.; Xie, Q.; Rajpal, D. K.; Sanseau, P.; Agarwal, P., Computational drug repositioning: from data to therapeutics, Clinical Pharmacology & Therapeutics, 93, 4, 335-341, (2013)
[4] Hopkins, A. L., Drug discovery: predicting promiscuity, Nature, 462, 7270, 167-168, (2009)
[5] Swamidass, S. J., Mining small-molecule screens to repurpose drugs, Briefings in Bioinformatics, 12, 4, 327-335, (2011)
[6] Feng, B. Y.; Simeonov, A.; Jadhav, A.; Babaoglu, K.; Inglese, J.; Shoichet, B. K.; Austin, C. P., A high-throughput screen for aggregation-based inhibition in a large compound library, Journal of Medicinal Chemistry, 50, 10, 2385-2390, (2007)
[7] Yildirim, M. A.; Goh, K.-I.; Cusick, M. E.; Barabási, A.-L.; Vidal, M., Drug-target network, Nature Biotechnology, 25, 10, 1119-1126, (2007)
[8] Zhao, S.; Li, S., Network-based relating pharmacological and genomic spaces for drug target identification, PLoS ONE, 5, 7, (2010)
[9] Alaimo, S.; Pulvirenti, A.; Giugno, R.; Ferro, A., Drug-target interaction prediction through domain-tuned network-based inference, Bioinformatics, 29, 16, 2004-2008, (2013)
[10] Mei, J.-P.; Kwoh, C.-K.; Yang, P.; Li, X.-L.; Zheng, J., Drug-target interaction prediction by learning from local information and neighbors, Bioinformatics, 29, 2, 238-245, (2013)
[11] van Laarhoven, T.; Marchiori, E., Predicting Drug-Target Interactions for New Drug Compounds Using a Weighted Nearest Neighbor Profile, PLoS ONE, 8, 6, (2013)
[12] Yuan, Q.; Gao, J.; Wu, D.; Zhang, S.; Mamitsuka, H.; Zhu, S., DrugE-Rank: improving drug-target interaction prediction of new candidate drugs or targets by ensemble learning to rank, Bioinformatics, 32, 12, i18-i27, (2016)
[13] Luo, H.; Wang, J.; Li, M.; Luo, J.; Peng, X.; Wu, F.-X.; Pan, Y., Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm, Bioinformatics, 32, 17, 2664-2671, (2016)
[14] Bolton, E. E.; Wang, Y.; Thiessen, P. A.; Bryant, S. H.
[15] Wishart, D. S.; Knox, C.; Guo, A. C.; Cheng, D.; Shrivastava, S.; Tzur, D.; Gautam, B.; Hassanali, M., DrugBank: a knowledgebase for drugs, drug actions and drug targets, Nucleic Acids Research, 36, D901-D906, (2008)
[16] Gaulton, A.; Bellis, L. J.; Bento, A. P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.; Overington, J. P., ChEMBL: a large-scale bioactivity database for drug discovery, Nucleic Acids Research, 40, 1, D1100-D1107, (2012)
[17] Qin, C.; Zhang, C.; Zhu, F.; Xu, F.; Chen, S. Y.; Zhang, P.; Li, Y. H.; Yang, S. Y.; Wei, Y. Q.; Tao, L.; Chen, Y. Z., Therapeutic target database update 2014: a resource for targeted therapeutics, Nucleic Acids Research, 42, 1, D1118-D1123, (2014)
[18] Kanehisa, M.; Goto, S., KEGG: kyoto encyclopedia of genes and genomes, Nucleic Acids Research, 28, 1, 27-30, (2000)
[19] Kuhn, M.; Campillos, M.; Letunic, I.; Jensen, L. J.; Bork, P., A side effect resource to capture phenotypic effects of drugs, Molecular Systems Biology, 6, 343, (2010)
[20] Kuhn, M.; Szklarczyk, D.; Pletscher-Frankild, S.; Blicher, T. H.; Von Mering, C.; Jensen, L. J.; Bork, P., STITCH 4: integration of protein-chemical interactions with user data, Nucleic Acids Research, 42, 1, D401-D407, (2014)
[21] Franceschini, A.; Szklarczyk, D.; Frankild, S.; Kuhn, M.; Simonovic, M.; Roth, A.; Lin, J.; Minguez, P.; Bork, P.; Von Mering, C.; Jensen, L. J., STRING v9.1: protein-protein interaction networks, with increased coverage and integration, Nucleic Acids Research, 41, 1, D808-D815, (2013)
[22] Liu, T.; Lin, Y.; Wen, X.; Jorissen, R. N.; Gilson, M. K., BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities, Nucleic Acids Research, 35, D198-D201, (2007)
[23] Dudley, J. T.; Deshpande, T.; Butte, A. J., Exploiting drug-disease relationships for computational drug repositioning, Briefings in Bioinformatics, 12, 4, 303-311, (2011)
[24] Ding, H.; Takigawa, I.; Mamitsuka, H.; Zhu, S., Similarity-basedmachine learning methods for predicting drug-target interactions: A brief review, Briefings in Bioinformatics, 15, 5, 734-747, (2013)
[25] Tabei, Y.; Yamanishi, Y., Scalable prediction of compound-protein interactions using minwise hashing., BMC systems biology, 7, S3, (2013)
[26] Yabuuchi, H.; Niijima, S.; Takematsu, H.; Ida, T.; Hirokawa, T.; Hara, T.; Ogawa, T.; Minowa, Y.; Tsujimoto, G.; Okuno, Y., Analysis of multiple compound-protein interactions reveals novel bioactive molecules, Molecular Systems Biology, 7, article no. 472, (2011)
[27] Yamanishi, Y.; Kotera, M.; Kanehisa, M.; Goto, S., Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework, Bioinformatics, 26, 12, i246-i254, (2010)
[28] Chen, X.; Yan, C. C.; Zhang, X.; Zhang, X.; Dai, F.; Yin, J.; Zhang, Y., Drug-target interaction prediction: Databases, web servers and computational models, Briefings in Bioinformatics, 17, 4, 696-712, (2016)
[29] Cheng, F.; Liu, C.; Jiang, J.; Lu, W.; Li, W.; Liu, G.; Zhou, W.; Huang, J.; Tang, Y., Prediction of drug-target interactions and drug repositioning via network-based inference, PLoS Computational Biology, 8, 5, (2012)
[30] Chen, X.; Liu, M.-X.; Yan, G.-Y., Drug-target interaction prediction by random walk on the heterogeneous network, Molecular BioSystems, 8, 7, 1970-1978, (2012)
[31] Bleakley, K.; Biau, G.; Vert, J.-P., Supervised reconstruction of biological networks with local models, Bioinformatics, 23, 13, i57-i65, (2007)
[32] Mordelet, F.; Vert, J.-P., SIRENE: Supervised inference of regulatory networks, Bioinformatics, 24, 16, i76-i82, (2008)
[33] Bleakley, K.; Yamanishi, Y., Supervised prediction of drug-target interactions using bipartite local models, Bioinformatics, 25, 18, 2397-2403, (2009)
[34] van Laarhoven, T.; Nabuurs, S. B.; Marchiori, E., Gaussian interaction profile kernels for predicting drug-target interaction, Bioinformatics, 27, 21, 3036-3043, (2011)
[35] Lan, W.; Wang, J.; Li, M.; Liu, J.; Li, Y.; Wu, F.-X.; Pan, Y., Predicting drug–target interaction using positive-unlabeled learning, Neurocomputing, 206, 50-57, (2016)
[36] Lan, W.; Wang, J.; Li, M.; Liu, J.; Wu, F. X.; Pan, Y., Predicting microrna-disease associations based on improved microrna and disease similarities, IEEEACM Transactions on Computational Biology & Bioinformatics, PP, 99, 1, (2016)
[37] Yan, C.; Wang, J.; Ni, P.; Lan, W.; Wu, F. X.; Pan, Y., Dnrlmf-mda:predicting microrna-disease associations based on similarities of micrornas and diseases, IEEEACM Transactions on Computational Biology & Bioinformatics, (2017)
[38] Gönen, M., Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization, Bioinformatics, 28, 18, 2304-2310, (2012)
[39] Zheng, X.; Ding, H.; Mamitsuka, H.; Zhu, S., Collaborative matrix factorization with multiple similarities for predicting drug-target interactions, Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
[40] Ezzat, A.; Zhao, P.; Wu, M.; Li, X., Drug-target interaction prediction with graph regularized matrix factorization, IEEEACM Transactions on Computational Biology & Bioinformatics, 1, 1, (2016)
[41] Hay, M.; Thomas, D. W.; Craighead, J. L.; Economides, C.; Rosenthal, J., Clinical development success rates for investigational drugs, Nature Biotechnology, 32, 1, 40-51, (2014)
[42] Mullard, A., Drug repurposing programmes get lift off, Nature Reviews Drug Discovery, 11, 7, 505-506, (2012)
[43] Wu, Z.; Cheng, F.; Li, J.; Li, W.; Liu, G.; Tang, Y., SDTNBI: an integrated network and chemoinformatics tool for systematic prediction of drug–target interactions and drug repositioning, Briefings in Bioinformatics, 333-347, (2016)
[44] Wang, B.; Mezlini, A. M.; Demir, F.; Fiume, M.; Tu, Z.; Brudno, M.; Haibe-Kains, B.; Goldenberg, A., Similarity network fusion for aggregating data types on a genomic scale, Nature Methods, 11, 3, 333-337, (2014)
[45] Basilico, J.; Hofmann, T., Unifying collaborative and content-based filtering, Proceedings of the Proceedings, Twenty-First International Conference on Machine Learning, ICML 2004
[46] Ben-Hur, A.; Noble, W. S., Kernel methods for predicting protein-protein interactions, Bioinformatics, 21, 1, i38-i46, (2005)
[47] Hue, M.; Vert, J.-P., On learning with kernels for unordered pairs, Proceedings of the 27th International Conference on Machine Learning, ICML 2010
[48] Xia, Z.; Wu, L.; Zhou, X.; Wong, S. T., Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces, BMC Systems Biology, 4, Suppl 2, S6, (2010)
[49] Huang, C.; Zhang, R.; Chen, Z.; Jiang, Y.; Shang, Z.; Sun, P.; Zhang, X.; Li, X., Predict potential drug targets from the ion channel proteins based on SVM, Journal of Theoretical Biology, 262, 4, 750-756, (2010) · Zbl 1403.92205
[50] You, Z.-H.; Huang, Z.-A.; Zhu, Z.; Yan, G.-Y.; Li, Z.-W.; Wen, Z.; Chen, X., Pbmda: A novel and effective path-based computational model for mirna-disease association prediction, PLoS Computational Biology, 13, 3, (2017)
[51] Lan, W.; Li, M.; Zhao, K.; Liu, J.; Wu, F.; Pan, Y.; Wang, J., LDAP: a web server for lncRNA-disease association prediction, Bioinformatics, 33, 3, 458-460, (2016)
[52] Petsko, G.; Ringe, D., ligand-based virtual screening for new antagonists of dopamine receptor D2/D3, Shanghai Management Science, (2013)
[53] Peng, X.; Wang, J.; Peng, W.; Wu, F.; Pan, Y., Protein–protein interactions: detection, reliability assessment and applications, Briefings in Bioinformatics, 18, 5, 798-819, (2016)
[54] Zhao, B.; Wang, J.; Wu, F., Computational Methods to Predict Protein Functions from Protein-Protein Interaction Networks, Current Protein & Peptide Science, 18, 11, (2017)
[55] Zhao, B.; Wang, J.; Li, X.; Wu, F.-X., Essential protein discovery based on a combination of modularity and conservatism, Methods, 110, 54-63, (2016)
[56] Zhao, B.; Wang, J.; Li, M.; Li, X.; Li, Y.; Wu, F.-X.; Pan, Y., A New Method for Predicting Protein Functions from Dynamic Weighted Interactome Networks, IEEE Transactions on NanoBioscience, 15, 2, 133-141, (2016)
[57] Wang, J.; Zhong, J.; Chen, G.; Li, M.; Wu, F.-X.; Pan, Y., ClusterViz: A Cytoscape APP for Cluster Analysis of Biological Network, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 12, 4, 815-822, (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.