zbMATH — the first resource for mathematics

Derivation and solution of effective medium equations for bulk heterojunction organic solar cells. (English) Zbl 1380.82057
Summary: A drift-diffusion model for charge transport in an organic bulk heterojunction solar cell, formed by conjoined acceptor and donor materials sandwiched between two electrodes, is formulated. The model accounts for (i) bulk photogeneration of excitons, (ii) exciton drift and recombination, (iii) exciton dissociation (into polarons) on the acceptor-donor interface, (iv) polaron recombination, (v) polaron dissociation into a free electron (in the acceptor) and a hole (in the donor), (vi) electron/hole transport and (vii) electron-hole recombination on the acceptor-donor interface. A finite element method is employed to solve the model in a cell with a highly convoluted acceptor/donor interface. The solutions show that, with physically realistic parameters, and in the power generating regime, the solution varies little on the scale of the micro-structure. This motivates us to homogenise over the micro-structure; a process that yields a far simpler one-dimensional effective medium model on the cell scale. The comparison between the solution of the full model and the effective medium (homogenised) model is very favourable for applied voltages less than the built-in voltage (the power generating regime) but breaks down as the applied voltages increases above it. Furthermore, it is noted that the homogenisation technique provides a systematic way to relate effective medium modelling of bulk heterojunctions to a more fundamental approach that explicitly models the full micro-structure and that it allows the parameters in the effective medium model to be derived in terms of the geometry of the micro-structure. Finally, the effective medium model is used to investigate the effects of modifying the micro-structure geometry, of a device with an interdigitated acceptor/donor interface, on its current-voltage curve.

82D37 Statistical mechanics of semiconductors
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
PDF BibTeX Cite
Full Text: DOI
[1] Allaire, G., Homogenization and two-scale convergence, SIAM J. Math. Anal., 23, 1482-1518, (1992) · Zbl 0770.35005
[2] Allsop, N.; Nürnberg, R.; Lux-Steiner, M. Ch.; Schedel-Niedrig, Th., Three-dimensional simulations of a thin film heterojunction solar cell with a point contact/defect passivation structure at the heterointerface, Appl. Phys. Lett., 95, 1-3, (2009)
[3] Barker, J. A.; Ramsdale, C. M.; Greenham, N. C., Modelling the current-voltage characteristic of bilayer polymer devices, Phys. Rev. B, 67, 075205, (2003)
[4] Barrett, J. W.; Elliott, C. M., Fitted and unfitted finite-element methods for elliptic equations with smooth interfaces, IMA J. Numer. Anal., 7, 283-300, (1987) · Zbl 0629.65118
[5] Braun, C. L., Electric-field assisted dissociation of charge-transfer states as a mechanism for photocarrier production, Chem. Phys., 80, 4157-4161, (1984)
[6] Bruna, M.; Chapman, S. J., Diffusion in spatially varying porous media, SIAM J.Appl. Maths., 75, 1648-1674, (2015) · Zbl 1320.35038
[7] Brinkman, D.; Fellner, K.; Markowich, P. A.; Wolfram, M.-T., A drift-diffusion-reaction model for excitonic photovoltaic bilayers: Asymptotic analysis and a 2-D HDG finite-element scheme, Math. Models Methods Appl. Sci., 23, 839-872, (2013) · Zbl 1264.35118
[8] Buxton, G. A.; Clarke, N., Predicting structure and property relations in polymeric photovoltaic devices, Phys. Rev. B, 74, 085207, (2006)
[9] Buxton, G. A.; Clarke, N., Computer simulation of polymer solar cells, Model. Simul. Mater. Sci. Eng., 15, 13-26, (2007)
[10] Chen, J.-D.; Cui, C.; Li, Y.-Q.; Zhou, L.; Ou, Q.-D.; Li, C.; Li, Y.; Tang, J.-X., Single-junction polymer solar cells exceeding 10% power conversion efficiency, Adv. Mater., 27, 1035-1041, (2015)
[11] Cole, J. D., Limit process expansions and homogenization, SIAM J. Appl. Math., 55, 410-424, (1995) · Zbl 0819.35012
[12] Clarke, T. M.; Durrant, J. R., Charge photogeneration in organic solar cells, Chem. Rev., 110, 6736-6767, (2010)
[13] Clover, I., (2016)
[14] Cioranescu, D.; Donato, P., An Introduction to Homogenization, (1999), Oxford: Oxford University Press, Oxford · Zbl 0939.35001
[15] Credgington, D.; Kim, Y.; Labram, J.; Anthopoulos, T. D.; Durrant, J., Analysis of recombination in polymer C60 solar cells, J. Phys. Chem. Lett., 2, 2759, (2011)
[16] Credgington, D.; Jamieson, F. C.; Walker, B.; Nguyen, T.-Q.; Durrant, J. R., Quantification of geminate and non-geminate recombination losses within a solution-processed small-molecule bulk heterojunction solar cell, Adv. Mater., 24, 2135-2141, (2012)
[17] Crone, B. K.; Davids, P. S.; Campbell, I. H.; Smith, D. L., Device model investigation of bilayer organic light emitting diodes, J. Appl. Phys., 87, 1974, (2000)
[18] Davids, P. S.; Campbell, I. H.; Smith, D. L., Device model for single carrier organic diodes, J. Appl. Phys., 82, 6319, (1997)
[19] De Falco, C.; Sacco, R.; Verri, M., Analytical and numerical study of photocurrent transients in organic polymer solar cells, Comput. Methods Appl. Mech. Eng., 199, 1722-1732, (2010) · Zbl 1231.78038
[20] Deibel, C.; Dyakonov, V., Polymer-fullerene bulk heterojunction solar cells, Rep. Prog. Phys., 73, 096401, (2010)
[21] Foster, J. M.; Kirkpatrick, J.; Richardson, G., Asymptotic and numerical prediction of current-voltagencurves for an organic bilayer solar cell under varying illumination and comparison to the Shockley equivalent circuit, J. Appl. Phys., 114, 104501, (2013)
[22] Gajewski, H.; Kaiser, H. Chr.; Langmach, H.; Nürnberg, R.; Richter, R. H.; Jäger, W.; Krebs, H. J., Mathematics? Key Technology for the Future, Mathematical modelling and numerical simulation of semiconductor detectors, 355-364, (2003), Springer: Springer, Berlin, Heidelberg · Zbl 1016.00014
[23] Gajewski, H., TeSCA Two- and Three-Dimensional Semi-Conductor Analysis Package, Applied Analysis and Stochastics: Applied Analysis and Stochastics, Berlin
[24] Günes, S.; Neugebauer, H.; Sariciftci, N. S., Conjugated polymer-based organic solar cells, Chem. Rev., 103, 1324, (2007)
[25] Gregg, K. A.; Hanna, M. C., Comparing organic to inorganic photovoltaic cells: Theory, experiment, and simulation, J. Appl. Phys., 93, 3605-3614, (2003)
[26] Groves, C.; Blakesley, J. C.; Greenham, N. C., Effect of charge trapping on geminate recombination and polymer solar cell performance, Nano Lett., 10, 1063-1069, (2010)
[27] Groves, C.; Kimber, R. G. E.; Walker, A. B., Simulation of loss mechanisms in organic solar cells, J. Chem. Phys., 133, 144110, (2010)
[28] Hoppe, H.; Sariciftci, N. S., Organic solar cells: An overview, J. Mater. Res., 19, 1924-1945, (2004)
[29] De Jongh, P. E.; Vanmaekelbergh, D., Trap-limited transport in assemblies of nanometer-size TiO_{2} particles, Phys. Rev. Lett., 77, 3427-3430, (1996)
[30] Keller, J. B., Lecture Notes in Pure and Applied Mathematics, Darcy’s law for flow in porous media and the two-space method, (1980), Dekker: Dekker, New York
[31] Keller, J. B.; Landman, U., Statistical Mechanics and Statistical Methods in Theory and Application, Effective behavior of heterogeneous media, 631-644, (1977), Plenum: Plenum, New York
[32] Kimber, R. G. E.; Wright, E. N.; O’Kane, S. E. J.; Walker, A. B.; Blakesley, J. C., Mesoscopic kinetic Monte Carlo modeling of organic photovoltaic device characteristics, Phys. Rev. B, 86, 235206, (2012)
[33] Kirchartz, T.; Pieters, B. E.; Kirkpatrick, J.; Rau, U.; Nelson, J., Recombination via tail states in polythiophene: Fullerene solar cells, Phys. Rev. B, 83, 115209, (2011)
[34] Kirkpatrick, J.; Marcon, V.; Kremer, K.; Andrienko, D., Charge mobility in discotic mesophases: A multiscale quantum and classical study, Phys. Rev. Lett., 98, 227402, (2007)
[35] Kodali, H. K.; Ganapathysubramanian, B., Computer simulation of heterogeneous polymer photovoltaic devices, Model. Simul. Mater. Sci. Eng., 20, 035015, (2012)
[36] Koster, L. J. A.; Smits, E. C. P.; Mihailetchi, V. D.; Blom, P. W. M., Device model for the operation of polymer/fullerene bulk heterojunction solar cells, Phys. Rev. B., 72, 085205, (2005)
[37] Kotlarski, J. D.; Blom, P. W.; Koster, L.; Sloof, L. H., Combined optical and electrical modeling of polymer: Fullerene bulk heterojunction solar cells, J. Appl. Phys., 103, 084502, (2008)
[38] Martin, C. M.; Burlakov, V. M.; Assender, H. E., Modellng charge transport in composite solar cells, Sol. Energy Mater. Sol. Cells, 90, 900-915, (2006)
[39] Martin, C. M.; Burlakov, V. M.; Assender, H.; Barkhouse, D. A. R., A numerical model for explaining the role of the interface morphology in composite solar cells, J. Appl. Phys., 102, 104506, (2007)
[40] Markov, D. E.; Amsterdam, E.; Blom, P. W. M.; Sieval, A. B.; Hummelen, J. C., Accurate measurement of the exciton diffusion length in a conjugated polymer using a heterostructure with a side-chain cross-linked fullerene layer, J. Phys. Chem. A, 109, 5266-5274, (2005)
[41] Mcneill, C. R.; Westenhoff, S.; Groves, C.; Friend, R. H.; Greenham, N. C., Influence of nanoscale phase separation on the charge generation dynamics and photovoltaic performance of conjugated polymer blends: Balancing charge generation and separation, J. Phys. Chem. C, 111, 19153-19160, (2007)
[42] Nelson, J., Diffusion-limited recombination in polymer-fullerene blends and its influence on photocurrent collection, Phys. Rev. B, 67, 155209, (2003)
[43] Nelson, J., The Physics of Solar Cells, (2003), London: Imperial College Press, London
[44] Offermans, T.; Meskers, S. C. J.; Janssen, R. A. J., Monte-Carlo simulations of geminate electron-hole pair dissociation in a molecular heterojunction: A two-step dissociation mechanism, Chem. Phys., 308, 125-133, (2005)
[45] Pautmeier, L.; Richert, R.; Bässler, H., Poole-Frenkel behaviour of charge transport in organic solids with off-diagonal disorder studied by Monte Carlo simulation, Synth. Met., 37, 271, (1990)
[46] Peumans, P.; Uchida, S.; Forrest, S. R., Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films, Nature, 425, 158-162, (2003)
[47] Potscavage, W. J.; Yoo, S.; Kippelen, B., Origin of the open-circuit voltage in a multilayer heterojunction organic solar cells, Appl. Phys. Lett., 93, 193308, (2008)
[48] Richardson, G.; Denuault, G.; Please, C. P., Multiscale modelling and analysis of lithium-ion battery charge and discharge, J. Eng. Math., 72, 41-72, (2012) · Zbl 1254.78026
[49] Richardson, G.; Please, C. P.; Foster, J.; Kirkpatrick, J. A., Asymptotic solution of a model for bilayer organic diodes and solar cells, SIAM J. Appl. Math., 72, 1792-1817, (2012) · Zbl 1276.82064
[50] Richardson, G.; Chapman, S. J., Derivation of the bidomain equations for a beating heart with a general microstructure, SIAM J. Appl. Math., 71, 657-675, (2011) · Zbl 1243.35015
[51] Scott, J. C.; Malliaras, G. G., Charge injection and recombination at the metal-organic interface, Chem. Phys. Lett., 299, 115-119, (1999)
[52] Seunhyup, Y.; Potscavage, W. J.; Domercqua, B.; Lic, T. D.; Jones, S. C.; Szozskiewicz, R.; Levib, D.; Riedoc, E.; Marder, S. R.; Killen, B., Analysis of improved photovoltaic properties of pentacene/C60 organic solarcells: Effects of exciton blocking layer thickness and thermal annealing, Solid-State Electron., 51, 1367, (2007)
[53] Rao, A.; Wilson, M. W. B.; Hodgkiss, J. M.; Albert-Seifried, S.; Bässler, H.; Friend, R. H., Exciton fission and charge generation via triplet excitons in pentacene/C_{60} bilayers, J. Am. Chem. Soc., 132, 12698-12703, (2010)
[54] Scharfetter, D. L.; Gummel, H. K., Large-signal analysis of a silicon Read diode oscillator, IEEE Trans. Electron. Dev., 16, 64-77, (1969)
[55] Sze, S. M.; Kwok, K. Ng, Physics of Semiconductor Devices, (2006), Wiley-Interscience: Wiley-Interscience, New York
[56] Tansae, C.; Blom, P. W. M.; De Leeuw, D. M.; Meijer, E. J., Charge carrier density dependence of mobility in poly-p-phenylene vinylene, Phys. Status Solidi B, 201, 1236, (2004)
[57] Verlaak, S.; Beljonne, D.; Cheyns, D.; Rolin, C.; Linares, M.; Castet, F.; Cornil, J.; Heremans, P., Electronic structure and geminate pair energetics at organic-organic interfaces: The case of pentacene/C_{60} heterojunctions, Adv. Funct. Mater., 19, 3809-3814, (2009)
[58] Williams, J.; Walker, A. B., Two-dimensional simulations of bulk heterojunction solar cell characteristics, Nanotechnology, 19, 424011, (2008)
[59] Wagenpfahl, A.; Rauh, D.; Binder, M.; Deibel, C.; Dyakonov, V., S-shaped current-voltage characteristics of organic solar devices, Phys. Rev. B, 82, 115306, (2010)
[60] Yang, F.; Shtein, M.; Forrest, S. R., Controlled growth of a molecular bulk heterojunction photovoltaic cell, Nat. Mat., 4, 37-41, (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.