## An efficient iterative penalization method using recycled Krylov subspaces and its application to impulsively started flows.(English)Zbl 1380.76090

Summary: We formulate the penalization problem inside a vortex particle-mesh method as a linear system. This system has to be solved at every wall boundary condition enforcement within a time step. Furthermore, because the underlying problem is a Poisson problem, the solution of this linear system is computationally expensive. For its solution, we here use a recycling iterative solver, rBiCGStab, in order to reduce the number of iterations and therefore decrease the computational cost of the penalization step. For the recycled subspace, we use the orthonormalized previous solutions as only the right hand side changes from the solution at one time to the next. This method is validated against benchmark results: the impulsively started cylinder, with validation at low Reynolds number ($$\mathrm{Re} = 550$$) and computational savings assessments at moderate Reynolds number ($$\mathrm{Re} = 9500$$); then on a flat plate benchmark ($$\mathrm{Re} = 1000$$). By improving the convergence behavior, the approach greatly reduces the computational cost of iterative penalization at a moderate cost in memory overhead.

### MSC:

 76M23 Vortex methods applied to problems in fluid mechanics 76M28 Particle methods and lattice-gas methods

CGS
Full Text:

### References:

 [1] Koumoutsakos, P.; Leonard, A., High-resolution simulations of the flow around an impulsively started cylinder using vortex methods, J. Fluid Mech., 296, 1, 1-38, (1995) · Zbl 0849.76061 [2] Cottet, G.-H.; Koumoutsakos, P., Vortex methods, theory and practice, (2000), Cambridge University Press [3] Winckelmans, G. S., Vortex methods, (Encyclopedia of Computational Mechanics, (2004), John Wiley & Sons, Ltd), 129-153 [4] Ploumhans, P.; Winckelmans, G. S., Vortex methods for high-resolution simulations of viscous flow past bluff bodies of general geometry, J. Comput. Phys., 165, 2, 354-406, (2000) · Zbl 1006.76068 [5] Ploumhans, P.; Winckelmans, G., Vortex methods for direct numerical simulation of three-dimensional bluff body flows: application to the sphere at re = 300, 500, and 1000, J. Comput. Phys., 178, 2, 427-463, (2002) · Zbl 1045.76030 [6] Cottet, G. H.; Michaux, B.; Ossia, S.; Vanderlinden, G., A comparison of spectral and vortex methods in three-dimensional incompressible flows, J. Comput. Phys., 175, 2, 702-712, (2002) · Zbl 1004.76066 [7] Cottet, G.-H.; Poncet, P., Advances in direct numerical simulations of 3D wall-bounded flows by vortex-in-cell methods, J. Comput. Phys., 193, 1, 136-158, (2004) · Zbl 1047.76092 [8] Bergdorf, M.; Koumoutsakos, P.; Leonard, A., Direct numerical simulations of vortex rings at re-gamma = 7500, J. Fluid Mech., 581, 495-505, (2007) · Zbl 1114.76033 [9] Cocle, R.; Winckelmans, G.; Daeninck, G., Combining the vortex-in-cell and parallel fast multipole methods for efficient domain decomposition simulations, J. Comput. Phys., 227, 21, 9091-9120, (2008) · Zbl 1391.76520 [10] Chatelain, P.; Curioni, A.; Bergdorf, M.; Rossinelli, D.; Andreoni, W.; Koumoutsakos, P., Billion vortex particle direct numerical simulations of aircraft wakes, Comput. Methods Appl. Mech. Eng., 197, 13, 1296-1304, (2008) · Zbl 1159.76368 [11] Marichal, Y.; Chatelain, P.; Winckelmans, G., An immersed interface solver for the 2-D unbounded Poisson equation and its application to potential flow, Comput. Fluids, 96, 76-86, (2014) · Zbl 1390.65134 [12] Marichal, Y.; Chatelain, P.; Winckelmans, G., Immersed interface interpolation schemes for particle-mesh methods, J. Comput. Phys., 326, 947-972, (2016) · Zbl 1373.76261 [13] Angot, P.; Bruneau, C.; Fabrie, P., A penalization method to take into account obstacles in incompressible viscous flows, Numer. Math., 81, 497-520, (1999) · Zbl 0921.76168 [14] Kevlahan, N. K.-R.; Ghidaglia, J.-M., Computation of turbulent flow past an array of cylinders using a spectral method with Brinkman penalization, Eur. J. Mech. B, Fluids, 20, 3, 333-350, (2001) · Zbl 1020.76037 [15] Mimeau, C.; Gallizio, F.; Cottet, G.-H.; Mortazavi, I., Vortex penalization method for bluff body flows, Int. J. Numer. Methods Fluids, 79, 2, 55-83, (2015), fld.4038 [16] Hejlesen, M. M.; Koumoutsakos, P.; Leonard, A.; Walther, J. H., Iterative Brinkman penalization for remeshed vortex methods, J. Comput. Phys., 280, 547-562, (2015) · Zbl 1349.76083 [17] Rasmussen, J. T.; Cottet, G.-H.; Walther, J. H., A multiresolution remeshed vortex-in-cell algorithm using patches, J. Comput. Phys., 230, 6742-6755, (2011) · Zbl 1408.76422 [18] Saad, Y., Iterative methods for sparse linear systems, (2003), SIAM · Zbl 1002.65042 [19] Saad, Y.; Schultz, M. H., Gmres: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 3, 856-869, (1986) · Zbl 0599.65018 [20] Sonneveld, P., CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 10, 1, 36-52, (1989) · Zbl 0666.65029 [21] van der Vorst, H. A., BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13, 2, 631-644, (1992) · Zbl 0761.65023 [22] de Sturler, E., Nested Krylov methods based on GCR, J. Comput. Appl. Math., 67, 15-41, (1996) · Zbl 0854.65026 [23] Parks, M. L.; de Sturler, E.; Mackey, G.; Johson, D. D.; Maiti, S., Recycling Krylov subspaces for sequences of linear systems, SIAM J. Sci. Comput., 28, 5, 1651-1674, (2006) · Zbl 1123.65022 [24] Morgan, R. B., Gmres with deflated restarting, SIAM J. Sci. Comput., 24, 1, 20-37, (2002) · Zbl 1018.65042 [25] Carpenter, M. H., A general algorithm for reusing Krylov subspace information, (2010), Langley Research Center, Technical Memorandum, NASA/TM-2010-216190 [26] Ahuja, K.; Benner, P.; de Sturler, E.; Feng, L., Recycling bicgstab with an application to parametric model order reduction, SIAM J. Sci. Comput., 37, 5, S429-S446, (2015) · Zbl 1325.65044 [27] de Sturler, E., Truncation strategies for optimal Krylov subspace methods, SIAM J. Numer. Anal., 36, 3, 864-889, (1999) · Zbl 0960.65031 [28] Amritkar, A.; Sturler, E.; Swirydowicz, K.; Tafti, D.; Ahuja, K., Recycling Krylov subspaces for CFD applications and a new hybrid recycling solver, J. Comput. Phys., 303, 222-237, (2015) · Zbl 1349.76581 [29] Coquerelle, M.; Cottet, G. H., A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies, J. Comput. Phys., 227, 21, 9121-9137, (2008) · Zbl 1146.76038 [30] Hockney, R.; Eastwood, J., Computer simulation using particles, (1988), Taylor & Francis, Inc. Bristol, PA, USA · Zbl 0662.76002 [31] Chatelain, P.; Koumoutsakos, P., A Fourier-based elliptic solver for vortical flows with periodic and unbounded directions, J. Comput. Phys., 229, 7, 2425-2431, (2010) · Zbl 1423.76332 [32] Gazzola, M.; Chatelain, P.; van Rees, W. M.; Koumoutsakos, P., Simulations of single and multiple swimmers with non-divergence free deforming geometries, J. Comput. Phys., 230, 19, 7093-7114, (2011) · Zbl 1328.76085 [33] Rossinelli, D.; Bergdorf, M.; Cottet, G.-H.; Koumoutsakos, P., GPU accelerated simulations of bluff body flows using vortex particle methods, J. Comput. Phys., 229, 9, 3316-3333, (2010) · Zbl 1307.76066 [34] Lanczos, C., Solution of systems of linear equations by minimized iterations, J. Res. Natl. Bur. Stand., 49, 33-53, (1952) [35] Noca, F.; Shiels, D.; Jeon, D., A comparison of methods for evaluating time-dependent fluid dynamic forces on bodies, using only velocity fields and their derivatives, J. Fluids Struct., 13, 5, 551-578, (1999) [36] Bar-Lev, M.; Yang, H. T., Initial flow field over an impulsively started circular cylinder, J. Fluid Mech., 72, 625-647, (1975) · Zbl 0317.76018 [37] Marichal, Y., An immersed interface vortex particle-mesh method, (2014), Université Catholique de Louvain, Ph.D. thesis
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.