Kukla, Jonas; Möhle, Martin On the block counting process and the fixation line of the Bolthausen-Sznitman coalescent. (English) Zbl 1390.60089 Stochastic Processes Appl. 128, No. 3, 939-962 (2018). Summary: The block counting process and the fixation line of the Bolthausen-Sznitman coalescent are analyzed. It is shown that these processes, properly scaled, converge in the Skorohod topology to the Mittag-Leffler process and to Neveu’s continuous-state branching process respectively as the initial state tends to infinity. Strong relations to Siegmund duality, Mehler semigroups and self-decomposability are pointed out. Furthermore, spectral decompositions for the generators and transition probabilities of the block counting process and the fixation line of the Bolthausen-Sznitman coalescent are provided leading to explicit expressions for functionals such as hitting probabilities and absorption times. Cited in 5 Documents MSC: 60F05 Central limit and other weak theorems 60J27 Continuous-time Markov processes on discrete state spaces 92D15 Problems related to evolution Keywords:absorption time; block counting process; Bolthausen-Sznitman coalescent; fixation line; hitting probabilities; Mehler semigroup; Mittag-Leffler process; Neveu’s continuous-state branching process; self-decomposability; Siegmund duality; spectral decomposition PDFBibTeX XMLCite \textit{J. Kukla} and \textit{M. Möhle}, Stochastic Processes Appl. 128, No. 3, 939--962 (2018; Zbl 1390.60089) Full Text: DOI arXiv References: [1] (Abramowitz, Milton; Stegun, Irene A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1984), A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York; John Wiley & Sons, Inc.: A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York; John Wiley & Sons, Inc. New York), xiv+1046, Reprint of the 1972 edition, Selected Government Publications, MR0757537 · Zbl 0643.33001 [2] Baake, Ellen; Lenz, Ute; Wakolbinger, Anton, The common ancestor type distribution of a \(\Lambda \)-Wright-Fisher process with selection and mutation, Electron. Commun. Probab., 21 (2016), Paper No. 59, 16, MR3548771 · Zbl 1346.60131 [3] Baur, Erich; Bertoin, Jean, The fragmentation process of an infinite recursive tree and Ornstein-Uhlenbeck type processes, Electron. J. Probab., 20, 98, 20 (2015), MR3399834 · Zbl 1333.60186 [4] Bertoin, Jean; Le Gall, Jean-François, The Bolthausen-Sznitman coalescent and the genealogy of continuous-state branching processes, Probab. Theory Related Fields, 117, 2, 249-266 (2000), MR1771663 · Zbl 0963.60086 [5] Bogachev, Vladimir I.; Röckner, Michael; Schmuland, Byron, Generalized Mehler semigroups and applications, Probab. Theory Related Fields, 105, 2, 193-225 (1996), MR1392452 · Zbl 0849.60066 [6] Bolthausen, Erwin; Sznitman, Alain-Sol, On Ruelle’s probability cascades and an abstract cavity method, Comm. Math. Phys., 197, 2, 247-276 (1998), MR1652734 · Zbl 0927.60071 [7] Christoph, Gerd; Schreiber, Karina, Discrete stable random variables, Statist. Probab. Lett., 37, 3, 243-247 (1998), MR1614930 · Zbl 1246.60026 [8] Donnelly, Peter; Kurtz, Thomas G., A countable representation of the Fleming-Viot measure-valued diffusion, Ann. Probab., 24, 2, 698-742 (1996), MR1404525 · Zbl 0869.60074 [9] Donnelly, Peter; Kurtz, Thomas G., Particle representations for measure-valued population models, Ann. Probab., 27, 1, 166-205 (1999), MR1681126 · Zbl 0956.60081 [10] Duchoň, Miloslav, A generalized Bernstein approximation theorem, Tatra Mt. Math. Publ., 49, 99-109 (2011), MR2867253 · Zbl 1265.41007 [11] Ethier, Stewart N.; Kurtz, Thomas G., (Markov Processes. Markov Processes, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics (1986), John Wiley & Sons, Inc.: John Wiley & Sons, Inc. New York), x+534, Characterization and convergence, MR0838085 · Zbl 1089.60005 [12] Freund, Fabian; Möhle, Martin, On the time back to the most recent common ancestor and the external branch length of the Bolthausen-Sznitman coalescent, Markov Process. Related Fields, 15, 3, 387-416 (2009), MR2554368 · Zbl 1203.60110 [13] Gaiser, Florian; Möhle, Martin, On the block counting process and the fixation line of exchangeable coalescents, ALEA Lat. Am. J. Probab. Math. Stat., 13, 2, 809-833 (2016), MR3546382 · Zbl 1346.60124 [14] Goldschmidt, Christina; Martin, James B., Random recursive trees and the Bolthausen-Sznitman coalescent, Electron. J. Probab., 10, 21, 718-745 (2005), MR2164028 · Zbl 1109.60060 [15] Harris, Theodore E., (The Theory of Branching Processes. The Theory of Branching Processes, Die Grundlehren der Mathematischen Wissenschaften, Bd., vol. 119 (1963), Springer-Verlag, Berlin; Prentice-Hall, Inc., Englewood Cliffs, N.J.), xiv+230, MR0163361 · Zbl 1037.60001 [16] Hénard, Olivier, Change of measure in the lookdown particle system, Stochastic Process. Appl., 123, 6, 2054-2083 (2013), MR3038498 · Zbl 1302.60107 [17] Hénard, Olivier, The fixation line in the \(\Lambda \)-coalescent, Ann. Appl. Probab., 25, 5, 3007-3032 (2015), MR3375893 · Zbl 1325.60124 [18] Huillet, Thierry; Möhle, Martin, On the extended Moran model and its relation to coalescents with multiple collisions, Theor. Popul. Biol., 87, 5-14 (2013), MR number not available · Zbl 1296.92207 [19] Iksanov, Alexander; Möhle, Martin, On the number of jumps of random walks with a barrier, Adv. Appl. Probab., 40, 1, 206-228 (2008), MR2411821 · Zbl 1157.60041 [20] Kingman, John Frank Charles, The coalescent, Stochastic Process. Appl., 13, 3, 235-248 (1982), MR0671034 · Zbl 0491.60076 [21] Kukla, Jonas; Pitters, Helmut H., A spectral decomposition for the Bolthausen-Sznitman coalescent and the Kingman coalescent, Electron. Commun. Probab., 20, 87, 13 (2015), MR3434204 · Zbl 1333.60167 [22] Labbé, Cyril, From flows of \(\Lambda \)-Fleming-Viot processes to lookdown processes via flows of partitions, Electron. J. Probab., 19, 55, 49 (2014), MR3227064 · Zbl 1334.60152 [23] Lamperti, John, Continuous state branching processes, Bull. Amer. Math. Soc., 73, 382-386 (1967), MR0208685 · Zbl 0173.20103 [24] Lamperti, John, The limit of a sequence of branching processes, Z. Wahrscheinlichkeitstheor. Verwandte Geb., 7, 271-288 (1967), MR0217893 · Zbl 0154.42603 [25] Möhle, Martin, Looking forwards and backwards in the multi-allelic neutral Cannings population model, J. Appl. Probab., 47, 3, 713-731 (2010), MR2731344 · Zbl 1210.60078 [26] Möhle, Martin, The Mittag-Leffler process and a scaling limit for the block counting process of the Bolthausen-Sznitman coalescent, ALEA Lat. Am. J. Probab. Math. Stat., 12, 1, 35-53 (2015), MR3333734 · Zbl 1329.60271 [27] Möhle, Martin; Pitters, Helmut, A spectral decomposition for the block counting process of the bolthausen-Sznitman coalescent, Electron. Commun. Probab., 19, 47, 11 (2014), MR3246966 · Zbl 1334.60157 [28] Jacques Neveu, A continuous-state branching process in relation with the GREM model of spin glass theory. Rapport interne no 267, École Polytechnique, 1992.; Jacques Neveu, A continuous-state branching process in relation with the GREM model of spin glass theory. Rapport interne no 267, École Polytechnique, 1992. [29] Norris, James R., (Markov Chains. Markov Chains, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 2 (1998), Cambridge University Press, Cambridge), xvi+237, Reprint of 1997 original, MR1600720 · Zbl 0938.60058 [30] Panholzer, Alois, Destruction of recursive trees, (Mathematics and Computer Science. III. Mathematics and Computer Science. III, Trends Math. (2004), Birkhäuser, Basel), 267-280, MR2090518 · Zbl 1060.05022 [31] Pfaffelhuber, Peter; Wakolbinger, Anton, The process of most recent common ancestors in an evolving coalescent, Stochastic Process. Appl., 116, 12, 1836-1859 (2006), MR2307061 · Zbl 1110.92030 [32] Pitman, Jim, Coalescents with multiple collisions, Ann. Probab., 27, 4, 1870-1902 (1999), MR1742892 · Zbl 0963.60079 [33] Pitman, Jim, (Combinatorial Stochastic Processes. Combinatorial Stochastic Processes, Lecture Notes in Mathematics, vol. 1875 (2006), Springer-Verlag: Springer-Verlag Berlin), x+256, Lectures from the 32nd Summer School on Probability Theory held in Saint-Flour, July 7-24, 2002, With a foreword by Jean Picard, MR2245368 · Zbl 1103.60004 [34] Pólya, Georg, Über den zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung und das Momentenproblem, Math. Z., 8, 3-4, 171-181 (1920), MR1544437 · JFM 47.0484.03 [35] Revuz, Daniel; Yor, Marc, (Continuous Martingales and Brownian Motion. Continuous Martingales and Brownian Motion, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293 (1999), Springer-Verlag: Springer-Verlag Berlin), xiv+602, MR1725357 · Zbl 0917.60006 [36] Sagitov, Serik, A key limit theorem for critical branching processes, Stochastic Process. Appl., 56, 1, 87-100 (1995), MR1324323 · Zbl 0819.60072 [37] Sagitov, Serik, The general coalescent with asynchronous mergers of ancestral lines, J. Appl. Probab., 36, 4, 1116-1125 (1999), MR1742154 · Zbl 0962.92026 [38] Shanbhag, Damodar N.; Sreehari, Maddipatla, On certain self-decomposable distributions, Z. Wahrscheinlichkeitstheor. Verwandte Geb., 38, 3, 217-222 (1977), MR0436267 · Zbl 0353.60025 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.