Freund, Fabian; Möhle, Martin On the size of the block of 1 for \(\varXi\)-coalescents with dust. (English) Zbl 1382.60109 Mod. Stoch., Theory Appl. 4, No. 4, 407-425 (2017). Summary: We study the frequency process \(f_{1}\) of the block of 1 for a \(\varXi\)-coalescent \(\varPi\) with dust. If \(\varPi\) stays infinite, \(f_{1}\) is a jump-hold process which can be expressed as a sum of broken parts from a stick-breaking procedure with uncorrelated, but in general non-independent, stick lengths with common mean. For Dirac-\(\varLambda\)-coalescents with \(\varLambda =\delta_{p}\), \(p\in [\frac{1}{2},1)\), \(f_{1}\) is not Markovian, whereas its jump chain is Markovian. For simple \(\varLambda\)-coalescents the distribution of \(f_{1}\) at its first jump, the asymptotic frequency of the minimal clade of 1, is expressed via conditionally independent shifted geometric distributions. Cited in 2 Documents MSC: 60J75 Jump processes (MSC2010) 60F15 Strong limit theorems 60G55 Point processes (e.g., Poisson, Cox, Hawkes processes) 60G09 Exchangeability for stochastic processes 60J25 Continuous-time Markov processes on general state spaces 60F05 Central limit and other weak theorems Keywords:\(\varXi\)-coalescent; coalescent with dust; Poisson point process; minimal clade; exchangeability PDFBibTeX XMLCite \textit{F. Freund} and \textit{M. Möhle}, Mod. Stoch., Theory Appl. 4, No. 4, 407--425 (2017; Zbl 1382.60109) Full Text: DOI arXiv References: [1] Abraham, R.; Delmas, J.-F., A construction of a β-coalescent via the pruning of binary trees, J. Appl. Probab., 50, 3, 772-790 (2013) · Zbl 1285.60078 [2] Abraham, R.; Delmas, J.-F., β-coalescents and stable Galton-Watson trees, Alea, 12, 1, 451-476 (2015) · Zbl 1321.60170 [3] Aldous, D.; Ibragimov, I.; Jacod, J.; Aldous, D., Ecole d’Eté de Probabilités de Saint-Flour xiii 1983, 1117, 1-198 (1985) [4] Amann, H.; Escher, J.; Brookfield, G., Analysis, 3 (2005) · Zbl 1097.26002 [5] Berestycki, J.; Berestycki, N.; Schweinsberg, J., Small-time behavior of beta coalescents, Ann. Inst. H. Poincaré Probab. Statist., 44, 2, 214-238 (2008) · Zbl 1214.60034 [6] Blum, M. G.B.; François, O., Minimal clade size and external branch length under the neutral coalescent, Adv. Appl. Probab., 37, 3, 647-662 (2005) · Zbl 1071.92020 · doi:10.1239/aap/1127483740 [7] Caliebe, A.; Neininger, R.; Krawczak, M.; Rösler, U., On the length distribution of external branches in coalescence trees: genetic diversity within species, Theor. Popul. Biol., 72, 2, 245-252 (2007) · Zbl 1123.92024 · doi:10.1016/j.tpb.2007.05.003 [8] Dhersin, J.-S.; Freund, F.; Siri-Jégousse, A.; Yuan, L., On the length of an external branch in the beta-coalescent, Stoch. Process. Appl., 123, 5, 1691-1715 (2013) · Zbl 1281.60069 · doi:10.1016/j.spa.2012.12.010 [9] Eldon, B.; Wakeley, J., Coalescent processes when the distribution of offspring number among individuals is highly skewed, Genetics, 172, 4, 2621-2633 (2006) [10] Erdös, P., On a family of symmetric Bernoulli convolutions, American Journal of Mathematics, 61, 4, 974-976 (1939) · JFM 65.1308.01 [11] Freund, F., Almost sure asymptotics for the number of types for simple Xi-coalescents, Electron. Commun. Probab., 17, 1-11 (2012) · Zbl 1255.60043 [12] Freund, F.; Möhle, M., On the number of allelic types for samples taken from exchangeable coalescents with mutation, Adv. Appl. Probab., 41, 4, 1082-1101 (2009) · Zbl 1202.92061 [13] Freund, F.; Möhle, M., On the time back to the most recent common ancestor and the external branch length of the Bolthausen-Sznitman coalescent, Markov Process. Related Fields, 15, 3, 387-416 (2009) · Zbl 1203.60110 [14] Freund, F.; Siri-Jégousse, A., Minimal clade size in the Bolthausen-Sznitman coalescent, J. Appl. Probab., 51, 3, 657-668 (2014) · Zbl 1320.60132 [15] Gnedin, A.; Iksanov, A.; Marynych, A., Λ-coalescents: a survey, J. Appl. Probab., 51A, 23-40 (2014) · Zbl 1322.60152 [16] Gnedin, A.; Iksanov, A.; Möhle, M., On asymptotics of exchangeable coalescents with multiple collisions, J. Appl. Probab., 45, 4, 1186-1195 (2008) · Zbl 1159.60016 · doi:10.1239/jap/1231340242 [17] Goldschmidt, C.; Martin, J. B., Random recursive trees and the Bolthausen-Sznitman coalescent, Electron. J. Probab., 10, 21, 718-745 (2005) · Zbl 1109.60060 [18] Grabner, P. J.; Prodinger, H., Asymptotic analysis of the moments of the Cantor distribution, Statist. Probab. Letters, 26, 3, 243-248 (1996) · Zbl 0844.62016 [19] Hénard, O., The fixation line in the Λ-coalescent, Ann. Appl. Probab., 25, 5, 3007-3032 (2015) · Zbl 1325.60124 [20] Herriger, P.; Möhle, M., Conditions for exchangeable coalescents to come down from infinity, Alea, 9, 2, 637-665 (2012) · Zbl 1277.60122 [21] Huillet, T.; Möhle, M., Asymptotics of symmetric compound Poisson population models, Combin. Probab. Comput., 24, 1, 216-253 (2015) · Zbl 1371.60173 [22] Janson, S.; Kersting, G., On the total external length of the Kingman coalescent, Electron. J. Probab., 16, 2203-2218 (2011) · Zbl 1245.60094 [23] Kersting, G.; Schweinsberg, J.; Wakolbinger, A., The size of the last merger and time reversal in Λ-coalescents (2017) [24] Kingman, J. F.C., The coalescent, Stoch. Process. Appl., 13, 3, 235-248 (1982) · Zbl 0491.60076 [25] Kingman, J. F.C., Poisson Processes (1993) · Zbl 0771.60001 [26] Lad, F.; Taylor, W. F.C., The moments of the Cantor distribution, Statist. Probab. Letters, 13, 4, 307-310 (1992) · Zbl 0747.60017 [27] Limic, V., On the speed of coming down from infinity for Ξ-coalescent processes, Electron. J. Probab., 15, 217-240 (2010) · Zbl 1203.60111 [28] Möhle, M., Asymptotic results for coalescent processes without proper frequencies and applications to the two-parameter Poisson-Dirichlet coalescent, Stoch. Process. Appl., 120, 11, 2159-2173 (2010) · Zbl 1214.60037 · doi:10.1016/j.spa.2010.07.004 [29] Möhle, M., On hitting probabilities of beta coalescents and absorption times of coalescents that come down from infinity, Alea, 11, 141-159 (2014) · Zbl 1341.60088 [30] Möhle, M.; Sagitov, S., A classification of coalescent processes for haploid exchangeable population models, Ann. Probab., 29, 4, 1547-1562 (2001) · Zbl 1013.92029 [31] Peres, Y.; Schlag, W.; Solomyak, B., Sixty years of Bernoulli convolutions, Progress in probability, 39-68 (2000) · Zbl 0961.42006 [32] Pitman, J., Coalescents with multiple collisions, Ann. Probab., 27, 4, 1870-1902 (1999) · Zbl 0963.60079 [33] Schweinsberg, J., Coalescents with simultaneous multiple collisions, Electron. J. Probab., 5, 1-50 (2000) · Zbl 0959.60065 [34] Siri-Jégousse, A.; Yuan, L., Asymptotics of the minimal clade size and related functionals of certain beta-coalescents, Acta Appl. Math., 142, 1, 127-148 (2016) · Zbl 1381.60107 [35] Solomyak, B., On the random series \(\sum \pm{\lambda }^n\) (an Erdös problem), Annals of Mathematics, 611-625 (1995) · Zbl 0837.28007 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.