×

zbMATH — the first resource for mathematics

Invariant metrics and indicatrices of bounded domains in \({\mathbb{C}}^ n\). (English. Russian original) Zbl 0684.32021
Sib. Math. J. 30, No. 1, 166-168 (1989); translation from Sib. Mat. Zh. 30, No. 1(173), 216-218 (1989).
See the review in Zbl 0671.32021.
MSC:
32F45 Invariant metrics and pseudodistances in several complex variables
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] C. M. Stanton, ?A characterization of polydisc,? Math. Ann.,253, 129-155 (1980). · Zbl 0453.32008 · doi:10.1007/BF01578908
[2] C. M. Stanton, ?A characterization of the ball by its intrinsic metrics,? Math. Ann.,264, 271-275, (1983). · Zbl 0511.32001 · doi:10.1007/BF01457530
[3] I. Graham and H. Wu, ?Characterizations of the unit ball Bn in complex Euclidean spaces,? Math. Z.,189, 449-456 (1985). · Zbl 0566.32018 · doi:10.1007/BF01168151
[4] Dzh. K. Tishabaev, ?Invariant metrics in biholomorphically equivalent domains in Cn,? Abstracts of Papers Given at the All-Union Seminar of Young Scholars ?Current Questions in Complex Analysis,? p. 103, Tashkent (1985).
[5] Sh. I. Tsyganov, ?Biholomorphic mappings of the direct product of domains,? Mat. Zametki,41, No. 6, 824-828 (1987). · Zbl 0629.32024
[6] C. Carathéodory, ?On the geometry of analytic figures obtained by analytic functions of two variables,? Abh. Math. Sem. Hamburg,6, 96-145 (1928). · JFM 54.0372.04 · doi:10.1007/BF02940606
[7] T. Barth, ?The Kobayashi indicatrix at the center of a circular domain,? Proc. Am. Math. Soc.,88, No. 3, 527-530 (1983). · Zbl 0494.32008 · doi:10.1090/S0002-9939-1983-0699426-0
[8] J. P. Vique, ?Characterization of analytic automorphisms of a bounded convex domain,? C. R. Acad. Sci. Ser. A,299, No. 4, 101-104 (1984).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.