zbMATH — the first resource for mathematics

Projections, the weighted Bergman spaces, and the Bloch space. (English) Zbl 0684.47022
The author extends some results of F. Forelli and W. Rudin [Indiana Univ. Math. J. 24, 593-602 (1974; Zbl 0297.47041)] and K. Zhu [J. Funct. Anal. 81, No.2, 260-278 (1988; Zbl 0669.47019)].
Let B be the unit ball in \({\mathbb{C}}^ n\). H(B) denotes the class of holomorphic functions on B. The Bloch space \(\beta\) is the space of all \(g\in H(B)\) for which \[ \| g\|_{\beta}=| g(0)| - \sup_{z\in B}(1-| z|^ 2)| \nabla g(z)| <\infty. \] Let dV denote the normalized volume measure on B, and \(dV_{\alpha}(z)=(1-| z|^ 2)^{\alpha} dV(z)\) \((\alpha >-1)\) is a measure on B. The weighted Bergman space \(A^ p_{\alpha}\) \((1\leq p<\infty)\) is the space \(L^ p(V_{\alpha})\cap H(B).\)
With \(s=\sigma +it\) \((\sigma >-1\), \(-\infty <t<\infty)\) there is associated a kernel \(K_ s=(1-| w|^ 2)^ s(1-z\cdot w)^{-n- 1-s}.\) The kernel \(K_ s\) defines an integral operator \(P_ s.\)
The main results of the paper are the following theorems.
Theorem 1. For \(1\leq p<\infty\), \(P_ s\) is a bounded operator on \(L^ p(V_{\alpha})\) if and only if \(p(1+\sigma)>1+\alpha.\) If \(p(1+\sigma)>1+\alpha\), then \(P_ sf=f\) and \(P_ s\bar f=\overline{f(0)}\) for every \(f\in A^ p_{\alpha}.\)
Theorem 2. For every s, \(P_ s\) is a bounded operator from \(L^{\infty}(B)\) onto \(\beta\). Moreover, \(P_ sC(\bar B)=P_ sC_ 0(B)=\beta_ 0\).
Reviewer: R.Salvi

47B38 Linear operators on function spaces (general)
32A25 Integral representations; canonical kernels (Szegő, Bergman, etc.)
32A10 Holomorphic functions of several complex variables
Full Text: DOI
[1] Patrick Ahern, On the behavior near a torus of functions holomorphic in the ball, Pacific J. Math. 107 (1983), no. 2, 267 – 278. · Zbl 0553.32004
[2] J. M. Anderson, J. Clunie, and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12 – 37. · Zbl 0292.30030
[3] Sheldon Axler, Bergman spaces and their operators, Surveys of some recent results in operator theory, Vol. I, Pitman Res. Notes Math. Ser., vol. 171, Longman Sci. Tech., Harlow, 1988, pp. 1 – 50. · Zbl 0681.47006
[4] R. R. Coifman, R. Rochberg, and Guido Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. (2) 103 (1976), no. 3, 611 – 635. · Zbl 0326.32011
[5] P. L. Duren, B. W. Romberg, and A. L. Shields, Linear functionals on \?^{\?} spaces with 0&lt;\?&lt;1, J. Reine Angew. Math. 238 (1969), 32 – 60. · Zbl 0176.43102
[6] Frank Forelli and Walter Rudin, Projections on spaces of holomorphic functions in balls, Indiana Univ. Math. J. 24 (1974/75), 593 – 602. · Zbl 0297.47041
[7] Clinton J. Kolaski, A new look at a theorem of Forelli and Rudin, Indiana Univ. Math. J. 28 (1979), no. 3, 495 – 499. · Zbl 0412.41023
[8] Steven G. Krantz and Daowei Ma, Bloch functions on strongly pseudoconvex domains, Indiana Univ. Math. J. 37 (1988), no. 1, 145 – 163. · Zbl 0628.32006
[9] Walter Rudin, Function theory in the unit ball of \?\(^{n}\), Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 241, Springer-Verlag, New York-Berlin, 1980. · Zbl 0495.32001
[10] A. L. Shields and D. L. Williams, Bonded projections, duality, and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc. 162 (1971), 287 – 302. · Zbl 0227.46034
[11] Richard M. Timoney, Bloch functions in several complex variables. I, Bull. London Math. Soc. 12 (1980), no. 4, 241 – 267. · Zbl 0416.32010
[12] Richard M. Timoney, Bloch functions in several complex variables. II, J. Reine Angew. Math. 319 (1980), 1 – 22. · Zbl 0425.32008
[13] Ke He Zhu, Duality and Hankel operators on the Bergman spaces of bounded symmetric domains, J. Funct. Anal. 81 (1988), no. 2, 260 – 278. · Zbl 0669.47019
[14] Ke He Zhu, The Bergman spaces, the Bloch space, and Gleason’s problem, Trans. Amer. Math. Soc. 309 (1988), no. 1, 253 – 268. · Zbl 0657.32002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.