Klass, Michael J. Maximizing \(E\max _{1\leq k\leq n}S^+_ k/ES^+_ n:\) A prophet inequality for sums of i.i.d. mean zero variates. (English) Zbl 0684.60032 Ann. Probab. 17, No. 3, 1243-1247 (1989). Let \(X_ 1,X_ 2,..\). be i.i.d. mean zero random variables. Put \(S_ k=X_ 1+...+X_ k\). It is proved that for any \(n\geq 1\) \[ E(\max_{1\leq k\leq n\quad}S^+_ k)\leq (2-n^{-1})E S\quad^+_ n. \] This result is nearly sharp. Reviewer: U.Krengel Cited in 2 Documents MSC: 60G40 Stopping times; optimal stopping problems; gambling theory 60E15 Inequalities; stochastic orderings 60G50 Sums of independent random variables; random walks Keywords:optimal stopping; prophet inequality PDF BibTeX XML Cite \textit{M. J. Klass}, Ann. Probab. 17, No. 3, 1243--1247 (1989; Zbl 0684.60032) Full Text: DOI OpenURL