zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Identification of binary response models. (English) Zbl 0684.62049
Summary: This article studies identification of the threshold-crossing model of binary response. Most research on binary response has considered specific estimators and tests. The study of identification exposes the foundations of binary response analysis by making explicit the assumptions needed to justify different methods. It also clarifies the connections between reduced-form and structural analyses of binary response data. Assume that the binary outcome z is determined by an observable random vector x and by an unobservable scalar u through a model $z=1[x\beta +u\ge 0]$. Also assume that $F\sb{u\vert x}$, the probability distribution of u conditional on x, is continuous and strictly increasing. Given these maintained assumptions, we investigate the identifiability of $\beta$ given the following restrictions on the distributions $(F\sb{u\vert x},x\in X):$ mean independence, quantile independence, index sufficiency, statistical independence, and statistical independence with the distribution known. We find that mean independence has no identifying power. On the other hand, quantile independence implies that $\beta$ is identified up to scale, provided that the distribution of x has sufficiently rich support. Index sufficiency can identify the slope components of $\beta$ up to scale and sign, again provided that the distribution of x has a rich support. Statistical independence subsumes both quantile independence and index sufficiency and so implies all of the positive findings previously reported. If u is statistically independent of x with the distribution known, identification requires only that the distribution of x has full rank.

MSC:
62J99Linear statistical inference
62G99Nonparametric inference
WorldCat.org
Full Text: DOI