×

zbMATH — the first resource for mathematics

Observer design for nonlinear systems. (English) Zbl 0684.93006
Summary: This paper deals with the observer design problem of a wide class of nonlinear systems subjected to bounded nonlinearities. A sufficient Lyapunov-like condition is provided and the proposed dynamic observer is a direct extension of the one in linear case.

MSC:
93B07 Observability
93C10 Nonlinear systems in control theory
93B50 Synthesis problems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Andreini, A.; Bacciotti, A.; Stefani, G., Global stabilizability of homogeneous vectors fields of odd degree, Systems control lett., 10, 251-256, (1988) · Zbl 0653.93040
[2] Baumann, W.; Rugh, W., Feedback control of nonlinear systems by extended linearization, IEEE trans. automat. control, 31, 40-47, (1986) · Zbl 0582.93031
[3] Bestle, D.; Zeitz, M., Canonical form observer design for non-linear time variable systems, Internat. J. control, 38, 419-431, (1983) · Zbl 0521.93012
[4] Corless, M.J.; Leitmann, G., Continuous state feedback guaranteering uniform ultimate boundedness for uncertain dynamic systems, IEEE trans. automat. control, 26, 1139-1144, (1981) · Zbl 0473.93056
[5] Derese, I.A., Bilinear observers for bilinear systems, IEEE trans. automat. control, 26, 590-592, (1981) · Zbl 0488.93010
[6] Gauthier, J.P.; Kazakos, D., Observability and observers for non-linear systems, () · Zbl 0635.93013
[7] Grassall, O.M.; Isidori, A., An existence theorem for observers of bilinear systems, IEEE trans. automat. control, 26, 1299-1300, (1981) · Zbl 0479.93015
[8] Hammouri, H.; Gauthier, J.O., Bilinearization up to output injection, Systems control lett., 11, 139-149, (1988) · Zbl 0648.93024
[9] Kou, S.R.; Elliot, D.L.; Tarn, T.J., Exponential observers for nonlinear dynamic systems, Internat. J. control, 29, 204-216, (1975) · Zbl 0319.93049
[10] Krener, A.J.; Respondek, W., Nonlinear observers and linearizable error dynamics, SIAM J. control optim., 23, 197-216, (1985) · Zbl 0569.93035
[11] Levine, J.; Marino, R., Nonlinear system immersion, observers and finite-dimensional filters, Systems control lett., 7, 133-142, (1986) · Zbl 0592.93030
[12] Nicosia, S.; Tomei, P.; Tornambé, A., Approximate asymptotic observers for a class of nonlinear systems, (), 157-162
[13] Selgrade, J.F., Asymptotic behavior of solutions to single loop positive feedback systems, J. differential equations, 38, 88-103, (1980) · Zbl 0419.34054
[14] van der Schaft, A.J., On nonlinear observers, IEEE trans. automat. control, 30, 1254-1256, (1986) · Zbl 0578.93009
[15] Tsinias, J., Stabilization of affine in control nonlinear systems, Nonlinear anal., 12, 1283-1296, (1988) · Zbl 0662.93055
[16] Tsinias, J.; Kalouptsidis, N., Prolongations and stability analysis via Liapunov functions of dynamical polysystems, Math. systems theory, 20, 215-233, (1987) · Zbl 0642.93052
[17] Walcott, B.L.; Zak, S.H., State observation of nonlinear uncertain dynamical systems, IEEE trans. automat. control, 32, 166-170, (1987) · Zbl 0618.93019
[18] Willems, J.C., Stability theory of dynamical systems, (1970), Wiley New York · Zbl 0222.93010
[19] Williamson, D., Observation of bilinear systems with application to biological control, Automatica, 13, 243-254, (1977) · Zbl 0351.93008
[20] Wonham, W.M., Linear multivariable control, (1979), Springer New York · Zbl 0393.93024
[21] Xia, X.; Gao, W., On exponential observers for nonlinear systems, Systems control lett., 11, 319-325, (1988) · Zbl 0654.93010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.