zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A `universal’ construction of Artstein’s theorem on nonlinear stabilization. (English) Zbl 0684.93063
Summary: This note presents an explicit proof of the theorem - due to {\it Z. {\it Artstein}} [Nonlinear Anal., Theory Methods Appl. 7, 1163-1173 (1983; Zbl 0525.93053)] - which states that the existence of a smooth control- Lyapunov function implies smooth stabilizability. Moreover, the result is extended to the real-analytic and rational cases as well. The proof uses a `universal’ formula given by an algebraic function of Lie derivatives; this formula originates in the solution of a simple Riccati equation.

93D15Stabilization of systems by feedback
93D20Asymptotic stability of control systems
93C10Nonlinear control systems
Full Text: DOI
[1] Artstein, Z.: Stabilization with relaxed controls. Nonlinear anal., 1163-1173 (1983) · Zbl 0525.93053
[2] Dayawansa, W. P.; Martin, C. F.: Asymptotic stabilization of two dimensional real analytic systems. Systems control lett. 12, 205-211 (1989) · Zbl 0673.93064
[3] Delchamps, D. F.: Analytic stabilization and the algebraic Riccati equation. Proc. IEEE conf. Dec. and control, 1396-1401 (1983)
[4] Jurdjevic, V.; Quinn, J. P.: Controllability and stability. J. differential equations 28, 381-389 (1978) · Zbl 0417.93012
[5] Kawski, M.: Stabilization of nonlinear systems in the plane. Systems control lett. 12, 169-175 (1989) · Zbl 0666.93103
[6] Hörmander, L.: The analysis of linear partial differential operators II. (1983) · Zbl 0521.35002
[7] Sontag, E. D.: A Lyapunov-like characterization of asymptotic controllability. SIAM J. Control optim. 21, 462-471 (1983) · Zbl 0513.93047
[8] Sontag, E. D.: Continuous stabilizers and high-gain feedback. IMA J. Math. control and inform. 3, 237-253 (1986) · Zbl 0628.93009
[9] Sontag, E. D.: Smooth stabilization implies coprime factorization. IEEE trans. Automat. control 34, 435-443 (1989) · Zbl 0682.93045
[10] Sontag, E. D.; Sussmann, H. J.: Remarks on continuous feedback. Proc. IEEE conf. Dec. and control (1989) · Zbl 0675.93064
[11] Tsinias, J.: Sufficient lyapunovlike conditions for stabilization. Math. control signals systems 2, 343-347 (1989) · Zbl 0688.93048