×

Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure. (English) Zbl 1384.58020

Let \(\mathcal{M}=(M,g)\) be a compact smooth Riemannian manifold of dimension \(n\geq3\). Let \(\Delta\) be the scalar Laplacian. Suppose that \(\phi_\lambda\) is a smooth eigenfunction of the Laplacian corresponding to the eigenvalue \(\lambda\), i.e. \(\Delta\phi_\lambda+\lambda\phi_\lambda=0\). Let \(H^{n-1}\) denote the \((n-1)\) dimensional Hausdorff measure. Let \(N(\phi_\lambda):=\{x:\phi_\lambda(x)=0\}\) be the nodal set. The author shows that there exists a constant \(\alpha(n)>\frac12\) and a constant \(C(\mathcal{M})>0\) so that \(H^{n-1}(N(\phi_\lambda))\leq C(\mathcal{M})\lambda^{\alpha(n)}\). This estimate is derived from an estimate bounding the volume of the nodal set of a harmonic function in terms of the frequency function.
The first section contains a historical summary putting the problem in context. The second section treats the simplex lemma. The third section discusses the propagation of smallness of Cauchy data. The fourth section provides the hyperplane lemma. The fifth section gives the number of cubes with a big doubling index. The sixth section provides upper estimates of the volume of the nodal set. The final section contains a number of auxiliary lemmas.

MSC:

58J50 Spectral problems; spectral geometry; scattering theory on manifolds
35P05 General topics in linear spectral theory for PDEs
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Br\`“uning, Jochen, {\'”{U}}ber {K}noten von {E}igenfunktionen des {L}aplace-{B}eltrami-{O}perators, Math. Z.. Mathematische Zeitschrift, 158, 15-21, (1978) · Zbl 0349.58012
[2] Colding, Tobias H.; Minicozzi, II, William P., Lower bounds for nodal sets of eigenfunctions, Comm. Math. Phys.. Communications in Mathematical Physics, 306, 777-784, (2011) · Zbl 1238.58020
[3] Logunov, A., Nodal sets of {L}aplace eigenfunctions: proof of {N}adirashvili’s conjecture and of the lower bound in {Y}au’s conjecture, Ann. of Math., 187, 241-262, (2018) · Zbl 1384.58021
[4] Nadirashvili, N., Geometry of nodal sets and multiplicity of eigenvalues, Curr. Dev. Math., 231-235, (1997) · Zbl 1384.58022
[5] Sogge, Christopher D.; Zelditch, Steve, Lower bounds on the {H}ausdorff measure of nodal sets {II}, Math. Res. Lett.. Mathematical Research Letters, 19, 1361-1364, (2012) · Zbl 1283.58020
[6] Yau, Shing Tung, Problem section. Seminar on {D}ifferential {G}eometry, Ann. of Math. Stud., 102, 669-706, (1982) · Zbl 0479.53001
[7] Agmon, Shmuel, Unicit\'e et convexit\'e dans les probl\`“‘emes diff\'”’erentiels, S\'eminaire de Math\'ematiques Sup\'erieures, No. 13 (\'Et\'e, 1965), 152 pp., (1966) · Zbl 0147.07702
[8] Almgren, Jr., Frederick J., Dirichlet’s problem for multiple valued functions and the regularity of mass minimizing integral currents. Minimal Submanifolds and Geodesics, 1-6, (1979)
[9] Landis, E. M., Some questions in the qualitative theory of second-order elliptic equations (case of several independent variables), Uspehi Mat. Nauk. Akademiya Nauk SSSR i Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk, 18, 3-62, (1963) · Zbl 0125.05802
[10] Alessandrini, Giovanni; Rondi, Luca; Rosset, Edi; Vessella, Sergio, The stability for the {C}auchy problem for elliptic equations, Inverse Problems. Inverse Problems. An International Journal on the Theory and Practice of Inverse Problems, Inverse Methods and Computerized Inversion of Data, 25, 123004-47, (2009) · Zbl 1190.35228
[11] Dong, Rui-Tao, Nodal sets of eigenfunctions on {R}iemann surfaces, J. Differential Geom.. Journal of Differential Geometry, 36, 493-506, (1992) · Zbl 0776.53024
[12] Donnelly, Harold; Fefferman, Charles, Nodal sets of eigenfunctions on {R}iemannian manifolds, Invent. Math.. Inventiones Mathematicae, 93, 161-183, (1988) · Zbl 0659.58047
[13] Donnelly, Harold; Fefferman, Charles, Nodal sets for eigenfunctions of the {L}aplacian on surfaces, J. Amer. Math. Soc.. Journal of the American Mathematical Society, 3, 333-353, (1990) · Zbl 0702.58077
[14] Garofalo, Nicola; Lin, Fang-Hua, Monotonicity properties of variational integrals, {\(A_p\)} weights and unique continuation, Indiana Univ. Math. J.. Indiana University Mathematics Journal, 35, 245-268, (1986) · Zbl 0678.35015
[15] Hardt, Robert; Simon, Leon, Nodal sets for solutions of elliptic equations, J. Differential Geom.. Journal of Differential Geometry, 30, 505-522, (1989) · Zbl 0692.35005
[16] Han, Q.; Lin, F.-H., Nodal Sets of Solutions of Elliptic Differential Equations
[17] Lin, Fang-Hua, Nodal sets of solutions of elliptic and parabolic equations, Comm. Pure Appl. Math.. Communications on Pure and Applied Mathematics, 44, 287-308, (1991) · Zbl 0734.58045
[18] Logunov, A.; Malinnikova, {\relax Eu}., Nodal sets of {L}aplace eigenfunctions: estimates of the {H}ausdorff measure in dimension two and three
[19] Mangoubi, Dan, The effect of curvature on convexity properties of harmonic functions and eigenfunctions, J. Lond. Math. Soc. (2). Journal of the London Mathematical Society. Second Series, 87, 645-662, (2013) · Zbl 1316.35220
[20] Nazarov, F\"edor; Polterovich, Leonid; Sodin, Mikhail, Sign and area in nodal geometry of {L}aplace eigenfunctions, Amer. J. Math.. American Journal of Mathematics. http://muse.jhu.edu/journals/american_journal_of_mathematics/v127/127.4nazarov.pdf, 127, 879-910, (2005) · Zbl 1079.58026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.