×

zbMATH — the first resource for mathematics

GiRaFFE: an open-source general relativistic force-free electrodynamics code. (English) Zbl 1380.83003
MSC:
83-08 Computational methods for problems pertaining to relativity and gravitational theory
83C22 Einstein-Maxwell equations
76W05 Magnetohydrodynamics and electrohydrodynamics
85A30 Hydrodynamic and hydromagnetic problems in astronomy and astrophysics
PDF BibTeX Cite
Full Text: DOI
References:
[1] Abbott B P et al 2016 GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence Phys. Rev. Lett.116 241103
[2] Abbott B P et al 2016 Observation of gravitational waves from a binary black hole merger Phys. Rev. Lett.116 061102
[3] Alic D, Moesta P, Rezzolla L, Zanotti O and Jaramillo J L 2012 Accurate simulations of binary black-hole mergers in force-free electrodynamics Astrophys. J.754 36
[4] Arnowitt R, Deser S and Misner C W 1959 Dynamical structure and definition of energy in general relativity Phys. Rev.116 1322-30 · Zbl 0092.20704
[5] Balsara D and Spicer D S 1999 A staggered mesh algorithm using high order godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations J. Comput. Phys.149 270292 · Zbl 0936.76051
[6] Belczynski K, Kalogera V and Bulik T 2002 A comprehensive study of binary compact objects as gravitational wave sources: evolutionary channels, rates, and physical properties Astrophys. J.572 407-31
[7] Berger E 2014 Short-duration gamma-ray bursts Annu. Rev. Astron. Astrophys.52 43-105
[8] Blandford R D and Znajek R L 1977 Electromagnetic extraction of energy from Kerr black holes Mon. Not. R. Astron. Soc.179 433
[9] Brown J D, Diener P, Sarbach O, Schnetter E and Tiglio M 2009 Turduckening black holes: an analytical and computational study Phys. Rev. D 79 044023
[10] Cao G, Zhang L and Sun S 2015 The spectral simulations of axisymmetric force-free pulsar magnetosphere Mon. Not. R. Astron. Soc.455 4267
[11] Cao G, Zhang L and Sun S 2016 An oblique pulsar magnetosphere with a plasma conductivity Mon. Not. R. Astron. Soc.461 1068
[12] Colella P and Woodward P R 1984 The piecewise parabolic method (PPM) for gas-dynamical simulations J. Comput. Phys.54 174-201 · Zbl 0531.76082
[13] Collaborative Effort 2011 Einstein Toolkit for Relativistic Astrophysics Astrophys. Source Code Libr. (http://ascl.net/1102.014)
[14] Connaughton V et al 2016 Fermi GBM observations of LIGO gravitational-wave event GW150914 Astrophys. J. Lett.826 L6
[15] Contopoulos I, Kazanas D and Fendt C 1999 The axisymmetric pulsar magnetosphere Astrophys. J.511 351
[16] Cook G B 2000 Initial data for numerical relativity Living Rev. Relativ.3 5
[17] Del Zanna L, Bucciantini N and Londrillo P 2003 An efficient shock-capturing central-type scheme for multidimensional relativistic flows. II. Magnetohydrodynamics Astron. Astrophys.400 397-413 · Zbl 1222.76122
[18] Drell S D, Foley H M and Ruderman M A 1965 Drag and propulsion of large satellites in the ionosphere: an Alfvén propulsion engine in space J. Geophys. Res.70 3131-45
[19] Etienne Z B, Paschalidis V, Haas R, Mösta P and Shapiro S L 2015 IllinoisGRMHD: an open-source, user-friendly GRMHD code for dynamical spacetimes Class. Quantum Grav.32 175009 · Zbl 1327.83153
[20] Etienne Z B, Paschalidis V, Liu Y T and Shapiro S L 2012 Relativistic magnetohydrodynamics in dynamical spacetimes: improved electromagnetic gauge condition for adaptive mesh refinement grids Phys. Rev. D 85 024013
[21] Farris B D, Gold R, Paschalidis V, Etienne Z B and Shapiro S L 2012 Binary black hole mergers in magnetized disks: simulations in full general relativity Phys. Rev. Lett.109 221102
[22] Goldreich P and Lynden-Bell D 1969 Io, a jovian unipolar inductor Astrophys. J.156 59-78
[23] Harten A, Lax P D and van Leer B J 1983 On upstream differencing and Godunov-type schemes for hyperbolic conservation laws SIAM Rev.25 35-61 · Zbl 0565.65051
[24] Husa S, Hinder I and Lechner C 2006 Kranc: a mathematica package to generate numerical codes for tensorial evolution equations Comput. Phys. Commun.174 983-1004 · Zbl 1196.68327
[25] Komissarov S S 2002 Time-dependent, force-free, degenerate electrodynamics Mon. Not. R. Astron. Soc.336 759
[26] Komissarov S S 2004 Electrodynamics of black hole magnetospheres Mon. Not. R. Astron. Soc.350 407
[27] Komissarov S S 2005 Observations of the Blandford-Znajek and the MHD penrose processes in computer simulations of black hole magnetospheres Mon. Not. R. Astron. Soc.359 801
[28] Komissarov S S 2006 Simulations of the axisymmetric magnetospheres of neutron stars Mon. Not. R. Astron. Soc.367 19
[29] Kranc: Kranc assembles numerical code http://kranccode.org/
[30] Lehner L, Palenzuela C, Liebling S L, Thompson C and Hanna C 2012 Intense electromagnetic outbursts from collapsing hypermassive neutron stars Phys. Rev. D 86 104035
[31] McKinney J C 2006 General relativistic force-free electrodynamics: a new code and applications to black hole magnetospheres Mon. Not. R. Astron. Soc.367 1797
[32] McKinney J C 2006 Relativistic force-free electrodynamic simulations of neutron star magnetospheres Mon. Not. R. Astron. Soc.368 L30
[33] McKinney J C and Gammie C F 2004 A measurement of the electromagnetic luminosity of a Kerr black hole Astrophys. J.611 977
[34] McWilliams S T and Levin J 2011 Electromagnetic extraction of energy from black-hole-neutron-star binaries Astrophys. J.742 90
[35] Nakar E 2007 Short-hard gamma-ray bursts Phys. Rep.442 166-236
[36] Nathanail A and Contopoulos I 2014 Black hole magnetospheres Astrophys. J.788 186
[37] Palenzuela C, Bona C, Lehner L and Reula O 2011 Robustness of the Blanford-Znajek mechanism Class. Quantum Grav.28 4007
[38] Palenzuela C, Garrett T, Lehner L and Liebling S L 2010 Magnetospheres of black hole systems in force-free plasma Phys. Rev. D 82 044045
[39] Palenzuela C, Lehner L and Liebling S L 2010 Dual jets from binary black holes Science329 927
[40] Parfrey K, Beloborodov A M and Hui L 2012 Introducing PHAEDRA: a new spectral code for simulations of relativistic magnetospheres Mon. Not. R. Astron. Soc.423 1416
[41] Paschalidis V 2017 General relativistic simulations of compact binary mergers as engines of short gamma-ray bursts Class. Quantum Grav.34 084002 · Zbl 1368.83044
[42] Paschalidis V, Etienne Z B and Shapiro S L 2013 General-relativistic simulations of binary black hole-neutron stars: precursor electromagnetic signals Phys. Rev. D 88 021504
[43] Paschalidis V, Ruiz M and Shapiro S L 2015 Relativistic simulations of black hole-neutron star coalescence: the jet emerges Astrophys. J. Lett.806 L14
[44] Paschalidis V and Shapiro S L 2013 A new scheme for matching general relativistic ideal magnetohydrodynamics to its force-free limit Phys. Rev. D 88 104031
[45] Petri J 2016 General-relativistic force-free pulsar magnetospheres Mon. Not. R. Astron. Soc.455 3779
[46] Petri J 2016 Strongly magnetized rotating dipole in general relativity Astron. Astrophys.594 A112
[47] Ruiz M, Lang R N, Paschalidis V and Shapiro S L 2016 Binary neutron star mergers: a jet engine for short gamma-ray bursts Astrophys. J. Lett.824 L6
[48] Schnetter E, Hawley S and Hawke I 2016 Carpet: adaptive mesh refinement for the cactus framework Astrophys. Source Code Libr. (http://ascl.net/1611.016)
[49] Spitkovsky A 2006 Time-dependent force-free pulsar magnetospheres: axisymmetric and oblique rotators Astrophys. J.648 L51
[50] Stone J M and Pringle J E 2001 Magnetohydrodynamical non-radiative accretion flows in two dimensions Mon. Not. R. Astron. Soc.322 461-72
[51] Thorne K S, Price R H and MacDonald D A 1986 Black Holes: the Membrane Paradigm (New Haven, CT: Yale University Press) · Zbl 1374.83002
[52] Tóth G 2000 The ∇⋅B=0 constraint in shock-capturing magnetohydrodynamics codes J. Comput. Phys.161 605-52 · Zbl 0980.76051
[53] Wald R M 1974 Black hole in a uniform magnetic field Phys. Rev. D 10 1680
[54] Zhang F, McWilliams S T and Pfeiffer H P 2015 Stability of exact force-free electrodynamic solutions and scattering from spacetime curvature Phys. Rev. D 92 024049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.