×

zbMATH — the first resource for mathematics

Patterns and coherence resonance in the stochastic Swift-Hohenberg equation with Pyragas control: the Turing bifurcation case. (English) Zbl 1380.93230
Summary: We provide a multiple time scales analysis for the Swift-Hohenberg equation with delayed feedback via Pyragas control, with and without additive noise. An analysis of the pattern formation near onset indicates both the possibility of either standing waves (rolls) or traveling waves via Turing or Turing-Hopf bifurcations, respectively, depending on the product of the strength of the feedback and the length of the delay. The remainder of the paper is focused on Turing bifurcations, where the delay can drive the appearance of an additional time scale, intermediate to the usual slow and fast time scales observed in the modulation of rolls without delay. In the deterministic case, a Ginzburg-Landau-type modulation equation is derived that inherits Pyragas control terms from the original equation. The Eckhaus stability criteria is obtained for the rolls, with the intermediate time scale observed in the transients. In the stochastic context, slow modulation equations are derived for the amplitudes of the primary modes that are coupled to a fast Ornstein-Uhlenbeck-type equation with delay for the zero mode driven by the additive noise. By deriving an averaging approximation for the amplitude of the primary mode, we show how the interaction of noise and delay influences the existence and stability range for the noisy roll-type patterns. Furthermore, approximations for the spectral densities of the primary and zero modes show that oscillations on the intermediate times scale are sustained through the phenomenon of coherence resonance. These dynamics on the intermediate time scale are sustained through the interaction of noise and delay, in contrast to the deterministic context where dynamics on the intermediate times scale are transient.

MSC:
93E03 Stochastic systems in control theory (general)
93C23 Control/observation systems governed by functional-differential equations
34K35 Control problems for functional-differential equations
93B52 Feedback control
Software:
sapa
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Cross, M. C.; Hohenberg, P. C., Pattern formation outside of equilibrium, Rev. Modern Phys., 65, 851-1112, (1993) · Zbl 1371.37001
[2] Cross, M.; Greenside, H., Pattern Formation and Dynamics in Nonequilibrium Systems, (2009), Cambridge University Press Cambridge, UK · Zbl 1177.82002
[3] Hoyle, R. B., Pattern Formation: An Introduction To Methods, (2006), Cambridge University Press Cambridge, UK · Zbl 1087.00001
[4] Pismen, L. M., (Patterns and Interfaces in Dissipative Dynamics, Springer Series in Synergetics, (2006), Springer Berlin) · Zbl 1098.37001
[5] Kraft, A.; Gurevich, S. V., Time-delayed feedback control of spatio-temporal self-organized patterns, (Schöll, E.; Klapp, S. H.L.; Hövel, P., Dissipative Systems, Control of Self-Organizing Nonlinear Systems Series Understanding Complex Systems, (2016)), 413-430
[6] Tlidi, M.; Sonnino, A.; Sonnino, G., Delayed feedback induces motion of localized spots in reaction-diffusion systems, Phys. Rev. E, 87, 042918, (2013)
[7] Garcia-Ojalvo, J.; Sancho, J. M., Noise in Spatially Extended Systems, (1999), Springer-Verlag New York · Zbl 0938.60002
[8] Song, H.; Chen D. W. Li, D.; Qu, Y., Graph-theoretic approach to exponential synchronization of stochastic reaction-diffusion Cohen-Grossberg neural networks with time-varying delays, Neurocomputing, 177, 179-187, (2016)
[9] Woolley, T. E.; Baker, R. E.; Gaffney, E. A.; Maini, P. K.; Seirin-Lee, S., Effects of intrinsic stochasticity on delayed reaction-diffusion patterning systems, Phys. Rev. E, 85, 051914, (2012)
[10] Kilpatrick, Z. P., Delay stabilizes stochastic motion of bumps in layered neural fields, Physica D, 295-296, 30-45, (2015) · Zbl 1365.92009
[11] Sen, S.; Ghosh, P.; Ray, D. S., Reaction-diffusion systems with stochastic time delay in kinetics, Phys. Rev. E, 81, 056207, (2010)
[12] Swift, J.; Hohenberg, P. C., Hydrodynamic fluctuations at the convective instability, Phys. Rev. A, 15, 319-328, (1977)
[13] Pyragas, K., Continuous control of chaos by self-controlling feedback, Phys. Lett. A, 170, 421-428, (1992)
[14] Tlidi, M.; Vladimirov, A. G.; Pieroux, D.; Turaev, D., Spontaneous motion of cavity solitons induced by a delayed feedback, Phys. Rev. Lett., 103, 103904, (2009)
[15] Peletier, L. A.; Rottschäfer, V., Pattern selection of solutions of the Swift-Hohenberg equation, Physica D, 194, 95-126, (2004) · Zbl 1052.35076
[16] Peletier, L. A.; Troy, W. C., Spatial Patterns: Higher Order Models in Physics and Mechanics, (2001), Birkhäuser Boston · Zbl 1076.34515
[17] Avitabile, D.; Lloyd, D. J.B; Burke, J.; Knobloch, E.; Sandstede, B., To snake or not to snake in the planar Swift-Hohenberg equation, SIAM J. Appl. Dyn. Syst., 9, 704-733, (2010) · Zbl 1200.37014
[18] Budd, C. J.; Kuske, R. A., Localised periodic patterns for the non-symmetric generalized Swift-Hohenberg equation, Physica D, 208, 73-95, (2005) · Zbl 1073.35037
[19] Burke, J.; Knobloch, E., Localized states in the generalized Swift-Hohenberg equation, Phys. Rev. E, 73, 056211, (2006)
[20] Chapman, S. J.; Kozyreff, G., Exponential asymptotics of localised patterns and snaking bifurcation diagrams, Physica D, 238, 319-354, (2009) · Zbl 1156.37321
[21] Dawes, J. H.P., The emergence of a coherent structure for coherent structures: localized states in nonlinear systems, Phil. Trans. R. Soc. A, 368, 3519-3534, (2010) · Zbl 1202.37112
[22] Tlidi, M.; Vladimirov, A. G.; Turaev, D.; Kozyreff, G.; Pieroux, D.; Erneux, T., Spontaneous motion of localized structures and localized patterns induced by delayed feedback, Eur. Phys. J. D, 59, 59-65, (2010)
[23] Tlidi, M.; Averlant, E.; Vladimirov, A.; Panajotov, K., Delay feedback induces a spontaneous motion of two-dimensional cavity solitons in driven semiconductor microcavities, Phys. Rev. A, 86, 033822, (2012)
[24] Panajotov, K.; Tlidi, M., Spontaneous motion of cavity solitons in vertical-cavity lasers subject to optical injection and to delayed feedback, Eur. Phys. J. D, 59, 67-72, (2010)
[25] Montgomery, K.; Silber, M., Feedback control of traveling wave solutions of the complex Ginzburg Landau equation, Nonlinearity, 17, 2225-2248, (2004) · Zbl 1071.93022
[26] Postlethwaite, C. M.; Silber, M., Spatial and temporal feedback control of traveling wave solutions of the two-dimensional complex Ginzburg-Landau equation, Physica D, 236, 65-74, (2007) · Zbl 1136.35319
[27] Gurevich, S. V.; Friedrich, R., Instabilities of localized structures in dissipative systems with delayed feedback, Phys. Rev. Lett., 110, 014101, (2013)
[28] D. Blömker, Amplitude Equations for Stochastic Partial Differential Equations, RWTH Aachen, 2005, (Habilitationsschrift).
[29] Blömker, D.; Hairer, M.; Pavliotis, G. A., Modulation equations: stochastic bifurcation in large domains, Comm. Math. Phys., 258, 479-512, (2005) · Zbl 1084.60038
[30] Blömker, D.; Hairer, M.; Pavliotis, G. A., Stochastic Swift-Hohenberg equation near a change of stability, Proceedings of Equadiff-11, 27-37, (2005)
[31] D. Blömker, W.W. Mohammed, Amplitude equations for SPDEs with cubic nonlinearities. Stochastics, 85, 181-215. · Zbl 1291.60127
[32] Klepel, K.; Blömker, D.; Mohammed, W. W., Amplitude equation for the generalized Swift-Hohenberg equation with noise, Z. Angew. Math. Phys., 65, 1107-1126, (2014) · Zbl 1322.60117
[33] Mohammed, W. W.; Blömker, D.; Klepel, K., Modulation equation for stochastic Swift-Hohenberg equation, SIAM J. Math. Anal., 45, 14-30, (2013) · Zbl 1264.60039
[34] Staliunas, K., Spatial and temporal spectra of noise driven stripe patterns, Phys. Rev. E, 64, 066129, (2001)
[35] Viñals, J.; Hernández-García, E.; San Miguel, M.; Toral, R., Numerical study of the dynamical aspects of pattern selection in the stochastic Swift-Hohenberg equation in one dimension, Phys. Rev. A, 44, 1123, (1991)
[36] Pradas, M.; Pavliotis, G. A.; Kalliadasis, S.; Papageorgiou, D. T.; Tseluiko, D., Additive noise effects in active nonlinear spatially extended systems, Euro. J. of Appl. Math, 23, 563-591, (2012) · Zbl 1279.60081
[37] Kłosek, M. M.; Kuske, R., Multi-scale analysis for stochastic differential delay equations, SIAM Multisc. Model. Simul., 706-729, (2005) · Zbl 1093.34027
[38] Pavliotis, G. A.; Stuart, A., Multiscale Methods: Averaging and Homogenization, (2008), Springer · Zbl 1160.35006
[39] Hutt, A.; Longtin, A.; Schimansky-Geier, L., Additive global noise delays Turing bifurcations, Phys. Rev. Lett., 98, 230601, (2007)
[40] Trefethen, L. N., (Spectral Methods in MATLAB, Software, Environments, and Tools, (2000), Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA)
[41] Buckwar, E.; Kuske, R.; Mohammed, S.; Shardlow, T., Weak convergence of the Euler scheme for stochastic differential delay equations, LMS J. Comput. Math., 11, 60-99, (2005)
[42] Manneville, P., (Dissipative Structures and Weak Turbulence, Perspectives in Physics, (1990), Academic Press) · Zbl 0714.76001
[43] Eckhaus, W., (Studies in Nonlinear Stability Theory, Springer Tracts in Natural Philosophy, vol. 6, (1965), Springer)
[44] Küchler, U.; Mensch, B., Langevin’s stochastic differential equation extended by a time-delayed term, Stoch. Rep., 40, 23-42, (1992), 1992 · Zbl 0777.60048
[45] Baxendale, P. H.; Greenwwood, P. E., Sustained oscillations for density dependent Markov processes, J. Math. Biol., 63, 433, (2011) · Zbl 1230.92003
[46] McKane, A. J.; Newman, T. J., Predator-prey cycles from resonant amplification of demographic stochasticity, Phys. Rev. Lett., 94, 218102, (2005)
[47] Percival, D. B.; Walden, A. T., Spectral Analysis for Physical Applications, (1993), Cambridge University Press Cambridge · Zbl 0796.62077
[48] Jarque, C. M.; Bera, A. K., A test for normality of observations and regression residuals, Internat. Statist. Rev., 55, 163-172, (1987), (implemented in the jbtest function in Matlab) · Zbl 0616.62092
[49] Fischer, M.; Imkeller, P., A two state model for noise-induced resonance in bistable systems with delay, Stoch. Dyn., 5, 2, 247-270, (2005), Special Issue on Stochastic Dynamics with Delay and Memory · Zbl 1078.34060
[50] Huber, D.; Tsimring, L. S., Dynamics of an ensemble of noisy bistable elements with global time delayed coupling, Phys. Rev. Lett., 91, 260601, (2003)
[51] Tsimring, L. S.; Pikovsky, A., Noise-induced dynamics in bistable systems with delay, Phys. Rev. Lett., 87, 250602, (2001)
[52] Corless, R. M.; Gonnet, G. H.; Hare, D. E.G; Jeffrey, D. J.; Knuth, D. E., On the Lambert W function, Adv. Comput. Math., 5, 329-359, (1996) · Zbl 0863.65008
[53] Mallet-Paret, J., The Fredholm alternative for functional-differential equations of mixed type, J. Dynam. Differential Equations, 11, 1-47, (1999) · Zbl 0927.34049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.