×

Fast and accurate Voronoi density gridding from Lagrangian hydrodynamics data. (English) Zbl 1380.76125

Summary: Voronoi grids have been successfully used to represent density structures of gas in astronomical hydrodynamics simulations. While some codes are explicitly built around using a Voronoi grid, others, such as smoothed particle hydrodynamics (SPH), use particle-based representations and can benefit from constructing a Voronoi grid for post-processing their output. So far, calculating the density of each Voronoi cell from SPH data has been done numerically, which is both slow and potentially inaccurate. This paper proposes an alternative analytic method, which is fast and accurate. We derive an expression for the integral of a cubic spline kernel over the volume of a Voronoi cell and link it to the density of the cell. Mass conservation is ensured rigorously by the procedure. The method can be applied more broadly to integrate a spherically symmetric polynomial function over the volume of a random polyhedron.

MSC:

76M28 Particle methods and lattice-gas methods
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
85A30 Hydrodynamic and hydromagnetic problems in astronomy and astrophysics
PDF BibTeX XML Cite
Full Text: DOI arXiv Link

References:

[1] Aumer, M.; White, S. D.M.; Naab, T.; Scannapieco, C., Towards a more realistic population of bright spiral galaxies in cosmological simulations, Mon. Not. R. Astron. Soc., 434, 3142-3164, (2013)
[2] Bate, M. R.; Bonnell, I. A.; Bromm, V., The formation mechanism of Brown dwarfs, Mon. Not. R. Astron. Soc., 332, L65-L68, (2002)
[3] Bate, M. R.; Bonnell, I. A.; Price, N. M., Modelling accretion in protobinary systems, Mon. Not. R. Astron. Soc., 277, 362-376, (1995)
[4] Bowyer, A., Computing Dirichlet tessellations, Comput. J., 24, 2, 162, (1981)
[5] Camps, P.; Baes, M.; Saftly, W., Using 3D Voronoi grids in radiative transfer simulations, Astron. Astrophys., 560, A35, (2013)
[6] Clementel, N.; Madura, T. I.; Kruip, C. J.H.; Icke, V.; Gull, T. R., 3D radiative transfer in η carinae: application of the simplex algorithm to 3D SPH simulations of binary colliding winds, Mon. Not. R. Astron. Soc., 443, 2475-2491, (2014)
[7] Dale, J. E.; Ercolano, B.; Bonnell, I. A., Ionization-induced star formation - IV. triggering in bound clusters, Mon. Not. R. Astron. Soc., 427, 2852-2865, (2012)
[8] Dirichlet, G. L., Über die reduktion der positiven quadratischen formen mit drei unbestimmten ganzen zahlen, J. Reine Angew. Math., 40, 209-227, (1850)
[9] Duffell, P. C.; MacFadyen, A. I., TESS: a relativistic hydrodynamics code on a moving Voronoi mesh, Astrophys. J. Suppl. Ser., 197, 15, (2011)
[10] Gingold, R. A.; Monaghan, J. J., Smoothed particle hydrodynamics - theory and application to non-spherical stars, Mon. Not. R. Astron. Soc., 181, 375-389, (1977) · Zbl 0421.76032
[11] Harries, T. J.; Monnier, J. D.; Symington, N. H.; Kurosawa, R., Three-dimensional dust radiative-transfer models: the pinwheel nebula of WR 104, Mon. Not. R. Astron. Soc., 350, 565-574, (2004)
[12] Hubber, D. A.; Ercolano, B.; Dale, J., Observing gas and dust in simulations of star formation with Monte Carlo radiation transport on Voronoi meshes, Mon. Not. R. Astron. Soc., 456, 756-766, (2016)
[13] Koepferl, C. M.; Robitaille, T. P.; Dale, J. E.; Biscani, F., Insights from synthetic star-forming regions: I. reliable mock observations from SPH simulations, Astrophys. J. Suppl. Ser., (2016), in press
[14] Kurosawa, R.; Hillier, D. J., Tree-structured grid model of line and polarization variability from massive binaries, Astron. Astrophys., 379, 336-346, (2001) · Zbl 1021.85001
[15] Lucy, L. B., A numerical approach to the testing of the fission hypothesis, Astron. J., 82, 1013-1024, (1977)
[16] McMillan, P. J.; Dehnen, W., Initial conditions for disc galaxies, Mon. Not. R. Astron. Soc., 378, 541-550, (2007)
[17] Mirtich, B., Fast and accurate computation of polyhedral mass properties, J. Graph. Tools, 1, 2, 31-50, (1996)
[18] Monaghan, J., Extrapolating b splines for interpolation, J. Comput. Phys., 60, 2, 253-262, (1985), URL: · Zbl 0588.41005
[19] Price, D. J., Smoothed particle hydrodynamics and magnetohydrodynamics, J. Comput. Phys., 231, 759-794, (2012) · Zbl 1402.76100
[20] Rycroft, C. H., VORO++: a three-dimensional Voronoi cell library in C++, Chaos, 19, (2009)
[21] Sijacki, D.; Vogelsberger, M.; Kereš, D.; Springel, V.; Hernquist, L., Moving mesh cosmology: the hydrodynamics of galaxy formation, Mon. Not. R. Astron. Soc., 424, 2999-3027, (2012)
[22] Springel, V., E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh, Mon. Not. R. Astron. Soc., 401, 791-851, (2010)
[23] Steinacker, J.; Bacmann, A.; Henning, T., Application of adaptive multi-frequency grids to three-dimensional astrophysical radiative transfer, J. Quant. Spectrosc. Radiat. Transf., 75, 765-786, (2002)
[24] Vandenbroucke, B.; De Rijcke, S., The moving mesh code SHADOWFAX, Astron. Comput., 16, 109-130, (2016)
[25] Voronoi, G., Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur LES parallélloèdres primitifs, J. Reine Angew. Math., 134, 198-287, (1908) · JFM 39.0274.01
[26] Watson, D. F., Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes, Comput. J., 24, 2, 167, (1981)
[27] Zhu, Q.; Hernquist, L.; Li, Y., Numerical convergence in smoothed particle hydrodynamics, Astrophys. J., 800, 1, 6, (2015), URL:
[28] D.H. Forgan, I.A. Bonnell, Clumpy shocks as the driver of velocity dispersion in molecular clouds: the effects of self-gravity and magnetic fields, in preparation.
[29] Ramón-Fox, F. G.; Bonnell, I. A., Galactic scale flows and the triggering of star formation in spiral galaxies, (Proceedings of the Conference the Interplay Between Local and Global Processes in Galaxies, Cozumel, Mexico, (2016))
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.