×

Convergent star products for projective limits of Hilbert spaces. (English) Zbl 1394.46003

Let \(V\) be a vector space endowed with a locally convex topology and a continuous bilinear form. In a previous article [J. Geom. Phys. 81, 10–46 (2014; Zbl 1287.53073)], the second named author constructed a topology on the symmetric algebra \(S^{\bullet}(V)\) which makes the star product that comes from the bilinear form continuous. Many aspects of this topology were studied; in particular, the construction is functorial. In the present paper, the authors consider the case that the topology on \(V\) is the projective limit topology of Hilbert spaces, thus given by a family of Hilbert seminorms on \(V\). In [loc. cit.], on each fixed symmetric power \(S^k(V)\), a topology coming from the projective tensor product topology on \(V^{\otimes k}\) was used. In the present situation, there is another natural topology, namely, the topology induced by the extensions of the Hilbert seminorms on \(S^k(V)\). The latter leads to a different topology on \(S^{\bullet}(V)\), which is studied in detail in this article. The authors show that, in the special case that \(V\) is nuclear, the previous and the present construction of the topology coincide. In the special case that \(V\) is a Hilbert space itself, the authors relate their results to earlier work of G. Dito [“Deformation quantization on a Hilbert space”, in: Proceedings of the COE International Workshop. 139–157 (2005; doi:10.1142/9789812775061_0009)].

MSC:

46A13 Spaces defined by inductive or projective limits (LB, LF, etc.)
46L65 Quantizations, deformations for selfadjoint operator algebras

Citations:

Zbl 1287.53073
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bayen, F.; Flato, M.; Frønsdal, C.; Lichnerowicz, A.; Sternheimer, D., Deformation theory and quantization, Ann. Phys., 111, 61-151 (1978) · Zbl 0377.53025
[2] Bieliavsky, P.; Gayral, V., Deformation Quantization for Actions of Kählerian Lie Groups, Mem. Amer. Math. Soc., vol. 236(1115) (2015), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1323.22005
[3] Binz, E.; Honegger, R.; Rieckers, A., Field-theoretic Weyl quantization as a strict and continuous deformation quantization, Ann. H. Poincaré, 5, 327-346 (2004) · Zbl 1088.81066
[4] Buchholz, D.; Grundling, H., The resolvent algebra: a new approach to canonical quantum systems, J. Funct. Anal., 254, 11, 2725-2779 (2008) · Zbl 1148.46032
[5] Bursztyn, H.; Waldmann, S., On positive deformations of \(^⁎\)-algebras, (Dito, G.; Sternheimer, D., Quantization, Deformations, and Symmetries. Quantization, Deformations, and Symmetries, Conférence Moshé Flato 1999. Quantization, Deformations, and Symmetries. Quantization, Deformations, and Symmetries, Conférence Moshé Flato 1999, De Gruyter Stud. Math. Phys., vol. 22 (2000), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht, Boston, London), 69-80 · Zbl 0979.53098
[6] Dito, G., Deformation quantization on a Hilbert space, (Maeda, Y.; Tose, N.; Miyazaki, N.; Watamura, S.; Sternheimer, D., Proceedings of the CEO International Workshop on Noncommutative Geometry and Physics (2005), World Scientific: World Scientific Singapore), 139-157
[7] Dubois-Violette, M.; Kriegl, A.; Maeda, Y.; Michor, P., Smooth ⁎-algebras, (Maeda, Y.; Watamura, S., Proceedings of the International Workshop on Noncommutative Geometry and String Theory. Proceedings of the International Workshop on Noncommutative Geometry and String Theory, Progr. Theoret. Phys. Suppl., vol. 144 (2001), Yukawa Institute for Theoretical Physics), 54-78 · Zbl 1026.46062
[8] Forger, M.; Paulino, D. V., \(C^\ast \)-completions and the DFR-algebra, J. Math. Phys., 57, 2, Article 023517 pp. (2016), 31 · Zbl 1361.81082
[9] Gutt, S., Variations on deformation quantization, (Dito, G.; Sternheimer, D., Quantization, Deformations, and Symmetries. Quantization, Deformations, and Symmetries, Conférence Moshé Flato 1999. Quantization, Deformations, and Symmetries. Quantization, Deformations, and Symmetries, Conférence Moshé Flato 1999, De Gruyter Stud. Math. Phys., vol. 21 (2000), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht, Boston, London), 217-254 · Zbl 0997.53068
[10] Jarchow, H., Locally Convex Spaces (1981), B. G. Teubner: B. G. Teubner Stuttgart · Zbl 0466.46001
[11] Kaschek, D.; Neumaier, N.; Waldmann, S., Complete positivity of Rieffel’s deformation quantization, J. Noncommut. Geom., 3, 361-375 (2009) · Zbl 1172.53055
[12] Lechner, G.; Waldmann, S., Strict deformation quantization of locally convex algebras and modules, J. Geom. Phys., 99, 111-144 (2016) · Zbl 1330.53117
[13] Manuceau, J., \(C^\ast \)-Algèbre de relations de commutation, Ann. Inst. H. Poincaré Sér. A, 8, 139-161 (1968) · Zbl 0173.29902
[14] Meise, R.; Vogt, D., Einführung in die Funktionalanalysis (1992), Vieweg-Verlag: Vieweg-Verlag Braunschweig, Wiesbaden · Zbl 0781.46001
[15] Omori, H.; Maeda, Y.; Miyazaki, N.; Yoshioka, A., Deformation quantization of Fréchet-Poisson algebras: convergence of the Moyal product, (Dito, G.; Sternheimer, D., Quantization, Deformations, and Symmetries. Quantization, Deformations, and Symmetries, Conférence Moshé Flato 1999. Quantization, Deformations, and Symmetries. Quantization, Deformations, and Symmetries, Conférence Moshé Flato 1999, De Gruyter Stud. Math. Phys., vol. 22 (2000), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht, Boston, London), 233-245 · Zbl 0987.53036
[16] Omori, H.; Maeda, Y.; Miyazaki, N.; Yoshioka, A., Orderings and non-formal deformation quantization, Lett. Math. Phys., 82, 153-175 (2007) · Zbl 1136.53064
[17] Pflaum, M. J.; Schottenloher, M., Holomorphic deformation of Hopf algebras and applications to quantum groups, J. Geom. Phys., 28, 31-44 (1998) · Zbl 1011.17014
[18] Rieffel, M. A., Deformation quantization for actions of \(R^d\), Mem. Amer. Math. Soc., 106, 506 (1993), 93 pages · Zbl 0798.46053
[19] Schmüdgen, K., Unbounded Operator Algebras and Representation Theory, Oper. Theory Adv. Appl., vol. 37 (1990), Birkhäuser Verlag: Birkhäuser Verlag Basel, Boston, Berlin
[20] Schmüdgen, K., Unbounded Self-Adjoint Operators on Hilbert Space, Grad. Texts in Math., vol. 265 (2012), Springer-Verlag: Springer-Verlag Heidelberg, Berlin, New York · Zbl 1257.47001
[21] Waldmann, S., Poisson-Geometrie und Deformationsquantisierung. Eine Einführung (2007), Springer-Verlag: Springer-Verlag Heidelberg, Berlin, New York · Zbl 1139.53001
[22] Waldmann, S., A nuclear Weyl algebra, J. Geom. Phys., 81, 10-46 (2014) · Zbl 1287.53073
[23] Weinstein, A., Deformation quantization, Astérisque, 227, 389-409 (1995), Exp. No. 789, 5 · Zbl 0854.58026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.