×

Full-rank affine invariant submanifolds. (English) Zbl 1435.32016

“The relation between translation surfaces and billiards is given via a procedure called unfolding, which associates a translation surface to each polygon whose angles are rational multiples of \(\pi\). In fact, many specific applications to billiards have been elusive, since the set of unfoldings of polygons has measure zero. Consequently, although almost every translation surface has a dense \(\mathrm{GL}(2,\mathbb{R})\) orbit, the \(\mathrm{GL}(2,\mathbb{R})\) orbit closures of unfoldings have been unkown.”
In the paper under review, the authors prove that every \(\mathrm{GL}(2,\mathbb{R})\) orbit closure of a translation surface is a connected component of a stratum, the hyperelliptic locus, or consists entirely of surfaces whose Jacobians have extra endomorphisms. As an application, they show that the angles of any given polygon are multiples of \(\pi/3\), almost every polygon with the same angles unfolds to a translation surface whose orbit is dense in a connected component of the stratum. In addition, they also prove that there exist infinitely many rational triangles whose unfoldings have a dense \(\mathrm{GL}(2,\mathbb{R})\) orbit in a connected component of the stratum.

MSC:

32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)
30F60 Teichmüller theory for Riemann surfaces

References:

[1] P. Apisa,\({\operatorname{GL}}_2(\mathbb{R})\) orbit closures in hyperelliptic components of strata, to appear in Duke Math. J., preprint,arXiv:1508.05438v1[math.DS]. · Zbl 1436.32053
[2] P. Apisa,\({\operatorname{GL}}(2,\mathbb{R})\)-invariant measures in marked strata: Generic marked points, Earle-Kra for strata, and illumination, preprint,arXiv:1601.07894v1[math.DS]. · Zbl 1441.30063
[3] P. Apisa and A. Wright,Marked points on translation surfaces, preprint,arXiv:1708.03411[math.DS]. · Zbl 1478.32036
[4] J. Athreya, A. Eskin, and A. Zorich,Right-angled billiards and volumes of moduli spaces of quadratic differentials on \(\mathbb{C}{P}^1 \), with an appendix by Jon Chaika, Ann. Sci. Éc. Norm. Supér. (4)49(2016), 1311-1386. · Zbl 1372.32020
[5] D. Aulicino and D.-M. Nguyen,Rank two affine submanifolds in \(\mathcal{H}(2,2)\) and \(\mathcal{H}(3,1)\), Geom. Topol.20(2016), 2837-2904. · Zbl 1370.32006
[6] D. Aulicino, D.-M. Nguyen, and A. Wright,Classification of higher rank orbit closures in \(\mathcal{H}^{\text{odd}}(4)\), J. Eur. Math. Soc. (JEMS)18(2016), 1855-1872. · Zbl 1369.37044
[7] A. Avila, A. Eskin, and M. Möller,Symplectic and isometric \(\operatorname{SL}(2,\mathbb{R})\)-invariant subbundles of the Hodge bundle, J. Reine Angew. Math.732(2017), 1-20. · Zbl 1387.14093
[8] M. Bainbridge, D. Chen, Q. Gendron, S. Grushevsky, and M. Moeller,Compactification of strata of abelian differentials, preprint,arXiv:1604.08834v1[math.AG]. · Zbl 1403.14058
[9] J. Bang-Jensen and G. Gutin, “Digraphs” inTheory, Algorithms and Applications, Springer Monogr. in Math., Springer, London, 2001. · Zbl 0958.05002
[10] T. A. Driscoll and L. N. Trefethen,Schwarz-Christoffel Mapping, Cambridge Monogr. on Appl. Comp. Math.8, Cambridge Univ. Press, Cambridge, 2002. · Zbl 1003.30005
[11] A. Eskin and M. Mirzakhani,Invariant and stationary measures for the \(\operatorname{SL}(2,\mathbb{R})\) action on moduli space, preprint,arXiv:1302.3320v4[math.DS]. · Zbl 1478.37002
[12] A. Eskin, M. Mirzakhani, and A. Mohammadi,Isolation, equidistribution, and orbit closures for the \(\text{SL}(2,\mathbb{R})\) action on moduli space, Ann. of Math. (2)182(2015), 673-721. · Zbl 1357.37040
[13] S. Filip,Semisimplicity and rigidity of the Kontsevich-Zorich cocycle, Invent. Math.205(2016), 617-670. · Zbl 1368.14013 · doi:10.1007/s00222-015-0643-3
[14] S. Filip,Splitting mixed Hodge structures over affine invariant manifolds, Ann. of Math. (2)183(2016), 681-713. · Zbl 1342.14015
[15] G. Forni, C. Matheus, and A. Zorich,Lyapunov spectrum of invariant subbundles of the Hodge bundle, Ergodic Theory Dynam. Systems34(2014), 353-408. · Zbl 1290.37002 · doi:10.1017/etds.2012.148
[16] W. P. Hooper,Another Veech triangle, Proc. Amer. Math. Soc.141(2013), 857-865. · Zbl 1272.14022
[17] R. Kenyon and J. Smillie,Billiards on rational-angled triangles, Comment. Math. Helv.75(2000), 65-108. · Zbl 0967.37019 · doi:10.1007/s000140050113
[18] M. Kontsevich and A. Zorich,Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math.153(2003), 631-678. · Zbl 1087.32010 · doi:10.1007/s00222-003-0303-x
[19] E. Lanneau, D.-M. Nguyen, and A. Wright,Finiteness of Teichmüller curves in non-arithmetic rank 1 orbit closures, preprint,arXiv:1504.03742v2[math.DS]. · Zbl 1382.32011
[20] S. Lelièvre, T. Monteil, and B. Weiss,Everything is illuminated, Geom. Topol.20(2016), 1737-1762. · Zbl 1394.37075
[21] E. Looijenga, “Uniformization by Lauricella functions—An overview of the theory of Deligne-Mostow” inArithmetic and Geometry Around Hypergeometric Functions, Progr. Math.260, Birkhäuser, Basel, 2007, 207-244. · Zbl 1120.33013
[22] H. Masur,Closed trajectories for quadratic differentials with an application to billiards, Duke Math. J.53(1986), 307-314. · Zbl 0616.30044 · doi:10.1215/S0012-7094-86-05319-6
[23] C. Matheus and J.-C. Yoccoz,The action of the affine diffeomorphisms on the relative homology group of certain exceptionally symmetric origamis, J. Mod. Dyn.4(2010), 453-486. · Zbl 1220.37004 · doi:10.3934/jmd.2010.4.453
[24] C. T. McMullen,Billiards and Teichmüller curves on Hilbert modular surfaces, J. Amer. Math. Soc.16(2003), 857-885. · Zbl 1030.32012 · doi:10.1090/S0894-0347-03-00432-6
[25] C. T. McMullen,Dynamics of \(\text{SL}_2(\mathbb{R})\) over moduli space in genus two, Ann. of Math. (2)165(2007), 397-456. · Zbl 1131.14027
[26] C. T. McMullen,Braid groups and Hodge theory, Math. Ann.355(2013), 893-946. · Zbl 1290.30050 · doi:10.1007/s00208-012-0804-2
[27] C. T. McMullen, R. E. Mukamel, and A. Wright,Cubic curves and totally geodesic subvarieties of moduli space, Ann. of Math. (2)185(2017), 957-990. · Zbl 1460.14062
[28] Y. Minsky and B. Weiss,Nondivergence of horocyclic flows on moduli space, J. Reine Angew. Math.552(2002), 131-177. · Zbl 1079.32011
[29] M. Mirzakhani and A. Wright,The boundary of an affine invariant submanifold, Invent. Math.209(2017), 927-984. · Zbl 1378.37069
[30] M. Möller,Periodic points on Veech surfaces and the Mordell-Weil group over a Teichmüller curve, Invent. Math.165(2006), 633-649. · Zbl 1111.14019 · doi:10.1007/s00222-006-0510-3
[31] M. Möller,Variations of Hodge structures of a Teichmüller curve, J. Amer. Math. Soc.19(2006), 327-344. · Zbl 1090.32004 · doi:10.1090/S0894-0347-05-00512-6
[32] M. Möller,Linear manifolds in the moduli space of one-forms, Duke Math. J.144(2008), 447-487. · Zbl 1148.32007 · doi:10.1215/00127094-2008-041
[33] D.-M. Nguyen and A. Wright,Non-Veech surfaces in \(\mathcal{H}^{\text{hyp}}(4)\) are generic, Geom. Funct. Anal.24(2014), 1316-1335. · Zbl 1303.30039
[34] J.-C. Puchta,On triangular billiards, Comment. Math. Helv.76(2001), 501-505. · Zbl 1192.37048 · doi:10.1007/PL00013215
[35] J. C. Rohde,Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication, Lecture Notes in Math.1975, Springer, Berlin, 2009. · Zbl 1168.14001
[36] J. Smillie and B. Weiss,Minimal sets for flows on moduli space, Israel J. Math.142(2004), 249-260. · Zbl 1052.37025 · doi:10.1007/BF02771535
[37] W. A. Veech,Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math.97(1989), 553-583. · Zbl 0676.32006 · doi:10.1007/BF01388890
[38] A. Wright,Schwarz triangle mappings and Teichmüller curves: Abelian square-tiled surfaces, J. Mod. Dyn.6(2012), 405-426. · Zbl 1254.32021 · doi:10.3934/jmd.2012.6.405
[39] A. Wright,The field of definition of affine invariant submanifolds of the moduli space of abelian differentials, Geom. Topol.18(2014), 1323-1341. · Zbl 1320.32019 · doi:10.2140/gt.2014.18.1323
[40] A. Wright,Cylinder deformations in orbit closures of translation surfaces, Geom. Topol.19(2015), 413-438. · Zbl 1318.32021 · doi:10.2140/gt.2015.19.413
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.