De Verdière, Yves Colin; Hillairet, Luc; Trélat, Emmanuel Spectral asymptotics for sub-Riemannian Laplacians. I: Quantum ergodicity and quantum limits in the 3-dimensional contact case. (English) Zbl 1388.35137 Duke Math. J. 167, No. 1, 109-174 (2018). The authors study the spectral asymptotics for a sub-Riemannian Laplacian on a closed 3-dimensional manifold with an oriented contact distribution. They prove a quantum ergodicity theorem for the eigenfunctions of any associated sub-Riemannian Laplacian assuming that the Reeb flow is ergodic. A second main result establishes a decomposition of any quantum limit in a sum of two mutually singular measures for which additional geometric properties are available. It is worth noticing that this second main result holds true without any ergodicity assumption. Reviewer: Dumitru Motreanu (Juiz de Fora) Cited in 29 Documents MSC: 35P20 Asymptotic distributions of eigenvalues in context of PDEs 53D10 Contact manifolds (general theory) 53D25 Geodesic flows in symplectic geometry and contact geometry Keywords:sub-Riemannian Laplacian; contact manifolds; quantum ergodicity × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] V. I. Arnol’d,The asymptotic Hopf invariant and its applications, Selecta Math. Soviet.5(1986), 327-345. · Zbl 0623.57016 [2] D. Barilari,Trace heat kernel asymptotics in \(3\)-dimensional contact sR geometry, J. Math. Sci.195(2013), 391-441. · Zbl 1294.58004 · doi:10.1007/s10958-013-1585-1 [3] L. Boutet de Monvel,Hypoelliptic operators with double characteristics and related pseudo-differential operators, Comm. Pure Appl. Math.27(1974), 585-639. · Zbl 0294.35020 · doi:10.1002/cpa.3160270502 [4] L. Boutet de Monvel and V. Guillemin,The Spectral Theory of Toeplitz Operators, Ann. of Math. Stud.99, Princeton Univ. Press, Princeton. · Zbl 0469.47021 [5] Y. Colin de Verdière,Sur le spectre des opérateurs à géodésiques toutes périodiques, Comment. Math. Helv.54(1979), 508-522. · Zbl 0459.58014 · doi:10.1007/BF02566290 [6] Y. Colin de Verdière, “Calcul du spectre de certaines nilvariétés compactes de dimension 3” inSéminaire de Théorie Spectrale et Géométrie (Grenoble 1983-1984), Saint-Martin-d’Hères, Grenoble, 1984. · Zbl 0738.53029 [7] Y. Colin de Verdière,Ergodicité et fonctions propres du laplacien, Commun. Math. Phys.102(1985), 497-502. · Zbl 0592.58050 [8] Y. Colin de Verdière,Magnetic fields and sub-Riemannian geometry, in preparation. · Zbl 0937.35512 [9] Y. Colin de Verdière, J. Hilgert, and T. Weich,Irreducible representations of \(SL_2(\mathbb{R})\) and the Peyresq’s operators, in preparation. [10] Y. Colin de Verdière, L. Hillairet, and E. Trélat, “Quantum ergodicity and quantum limits for sub-Riemannian Laplacians” inSéminaire Laurent Schwartz - Equations aux Dérivées Partielles et Applications (Année 2014-2015), Exp.XX, Ed. Ec. Polytech., Palaiseau, 2016. · Zbl 1368.58016 [11] Y. Colin de Verdière, L. Hillairet, and E. Trélat,Spiraling of sub-Riemannian geodesics around the Reeb flow in the 3D contact case, preprint, 2017. [12] Y. Colin de Verdière, L. Hillairet, and E. Trélat,Spectral asymptotics for sub-Riemannian Laplacians II: Microlocal Weyl measures, in preparation. · Zbl 1388.35137 [13] V. J. Donnay, “Geodesic flow on the two-sphere, II: Ergodicity” inDynamical Systems (College Park, Md, 1986-1987), Lecture Notes in Math.1342, Springer, Berlin, 1988, 112-153. · Zbl 0671.58030 [14] H. Duistermaat and V. Guillemin,The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math.29(1975), 39-79. · Zbl 0307.35071 · doi:10.1007/BF01405172 [15] H. Duistermaat and L. Hörmander,Fourier integral operators, II, Acta Math.128(1972), 183-269. · Zbl 0232.47055 [16] J. J. Duistermaat,Fourier Integral Operators, Progr. in Math.130, Birkhäuser, Boston, 1996. · Zbl 0841.35137 [17] P. Foulon and B. Hasselblatt,Contact Anosov flows on hyperbolic 3-manifolds, Geom. Topol.17(2013), 1225-1252. · Zbl 1277.37057 · doi:10.2140/gt.2013.17.1225 [18] L. Gårding, T. Kotake, and J. Leray,Uniformisation et développement asymptotique de la solution du problème de Cauchy linéaire, à données holomorphes; analogie avec la théorie des ondes asymptotiques et approchées (Problème de Cauchy, I bis et VI), Bull. Soc. Math. France92(1964), 263-361. · Zbl 0147.08101 [19] B. Gaveau,Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur certains groupes nilpotents, Acta Math.139(1977), 95-153. · Zbl 0366.22010 · doi:10.1007/BF02392235 [20] H. Geiges,An Introduction to Contact Topology, Cambridge Stud. Adv. Math.109, Cambridge Univ. Press, Cambridge, 2008. · Zbl 1153.53002 [21] P. Gérard and E. Leichtnam,Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. J.71(1993), 559-607. · Zbl 0788.35103 · doi:10.1215/S0012-7094-93-07122-0 [22] C. Gordon and E. Wilson,The spectrum of the Laplacian on Riemannian Heisenberg manifolds, Michigan Math. J.33(1986), 253-271. · Zbl 0599.53038 · doi:10.1307/mmj/1029003354 [23] A. Hassell and A. Vasy,Symbolic functional calculus and \(N\)-body resolvent estimates, J. Funct. Anal.173(2000), 257-283. · Zbl 0960.58025 [24] B. Helffer, A. Martinez, and D. Robert,Ergodicité et limite semi-classique, Commun. Math. Phys.109(1987), 313-326. · Zbl 0624.58039 · doi:10.1007/BF01215225 [25] L. Hörmander,Hypoelliptic second order differential equations, Acta Math.119(1967), 147-171. · Zbl 0156.10701 [26] L. Hörmander,The spectral function of an elliptic operator, Acta Math.121(1968), 193-218. · Zbl 0164.13201 [27] L. Hörmander,Fourier integral operators, I, Acta Math.127(1971), 79-183. · Zbl 0212.46601 [28] D. Jakobson,Quantum limits on flat tori, Ann. Math.145(1997), 235-266. · Zbl 0874.58088 [29] D. Jakobson, Y. Safarov, and A. Strohmaier,The semiclassical theory of discontinuous systems and ray-splitting billiards, with an appendix by Y. Colin de Verdière, Amer. J. Math.137(2015), 859-906. · Zbl 1352.37108 · doi:10.1353/ajm.2015.0027 [30] D. Jakobson and S. Zelditch, “Classical limits of eigenfunctions for some completely integrable systems” inEmerging Applications of Number Theory (Minneapolis, Minn., 1996), IMA Vol. Math. Appl.109, Springer, New York, 1999, 329-354. · Zbl 1071.58505 [31] J. Karamata,Neuer Beweis und Verallgemeinerung einiger Tauberian-Sätze, Math. Z.33(1931), 294-299. · Zbl 0001.01802 · doi:10.1007/BF01174355 [32] A. Kriegl and P. W. Michor,The Convenient Setting of Global Analysis, Math. Surveys Monogr.53, Amer. Math. Soc., Providence, 1997. · Zbl 0889.58001 [33] V. Lazutkin,KAM Theory and Semiclassical Approximations to Eigenfunctions, with an addendum by A. I. Shnirelman, Ergeb. der Math. Grenzgeb. (3),24, Springer, Berlin, 1993. · Zbl 0814.58001 [34] D. McDuff and D. Salamon,Introduction to Symplectic Topology, 2nd ed., Oxford Math. Monogr., Oxford, 1998. · Zbl 1066.53137 [35] R. B. Melrose,The wave equation for a hypoelliptic operator with symplectic characteristics of codimension two, J. Analyse Math.44(1984-1985), 134-182. · Zbl 0599.35139 [36] A. Menikoff and J. Sjöstrand,On the eigenvalues of a class of hypoelliptic operators, Math. Ann.235(1978), 55-85. · Zbl 0375.35014 · doi:10.1007/BF01421593 [37] G. Métivier,Fonction spectrale et valeurs propres d’une classe d’opérateurs non elliptiques, Comm. Partial Differential Equations1(1976), 467-519. · Zbl 0376.35012 · doi:10.1080/03605307608820018 [38] R. Montgomery,Hearing the zero locus of a magnetic field, Comm. Math. Phys.168(1995), 651-675. · Zbl 0827.58076 · doi:10.1007/BF02101848 [39] R. Montgomery,A Tour of Subriemannian Geometries, their Geodesics and Applications, Math. Surveys Monogr.91, Amer. Math. Soc., Providence, 2002. · Zbl 1044.53022 [40] E. Nelson,Topics in dynamics, I: Flows, Math. Notes, Princeton Univ. Press, Princeton/Univ. of Tokyo Press, Tokyo 1969. · Zbl 0197.10702 [41] K. Petersen,Ergodic theory, corrected reprint of the 1983 original, Cambridge Stud. Adv. Math.2, Cambridge Univ. Press, Cambridge, 1989. [42] N. Raymond, and S. Vũ Ngọc,Geometry and spectrum in 2D magnetic wells, Ann. Inst. Fourier (Grenoble)65(2015), 137-169. · Zbl 1327.81207 [43] A. I. Shnirelman,Ergodic properties of eigenfunctions, Uspehi Mat. Nauk29(1974), 181-182. · Zbl 0324.58020 [44] R. S. Strichartz,Sub-Riemannian geometry, J. Differential Geom.24(1986), 221-263. · Zbl 0609.53021 · doi:10.4310/jdg/1214440436 [45] A. Weinstein,Symplectic manifolds and their Lagrangian submanifolds, Adv. Math.6(1971), 329-346. · Zbl 0213.48203 · doi:10.1016/0001-8708(71)90020-X [46] A. Weinstein, “Fourier integral operators, quantization and the spectra of Riemannian manifolds” inGéométrie Symplectique et Physique Mathématique (Colloq. Internat. CNRS,237, Aix-en-Provence, 1974), Centre Nat. Recherche Sci., Paris, 1975, 289-298. · Zbl 0327.58013 [47] A. Weinstein,Asymptotics of eigenvalue clusters for the Laplacian plus a potential, Duke Math. J.44(1977), 883-893. · Zbl 0385.58013 · doi:10.1215/S0012-7094-77-04442-8 [48] S. Zelditch,Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J.55(1987), 919-941. · Zbl 0643.58029 · doi:10.1215/S0012-7094-87-05546-3 [49] S. Zelditch,Recent Developments in Mathematical Quantum Chaos, Current Dev. Math., 2009, Int. Press, Somerville, Mass., 2010, 115-204. · Zbl 1223.37113 [50] S. Zelditch and M. Zworski,Ergodicity of eigenfunctions for ergodic billiards, Comm. Math. Phys.175(1996), 673-682. · Zbl 0840.58048 · doi:10.1007/BF02099513 [51] M. Zworski,Semiclassical Analysis, Grad. Stud. Math.138, Amer. Math. Soc., Providence, 2012. · Zbl 1252.58001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.