A computational stochastic methodology for the design of random meta-materials under geometric constraints. (English) Zbl 1398.60073


60G60 Random fields
62P30 Applications of statistics in engineering and industry; control charts
78M50 Optimization problems in optics and electromagnetic theory


Full Text: DOI


[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series 55, U.S. Government Printing Office, Washington, D.C., 1964. · Zbl 0171.38503
[2] S. Bochner, Lectures on Fourier Integrals, Princeton University Press, Princeton, NJ, 1959. · Zbl 0085.31802
[3] W. Cai, Computational Methods for Electromagnetic Phenomena: Electrostatics in Solvation, Scattering, and Electron Transport, Cambridge University Press, Cambrisge, UK, 2013. · Zbl 06136469
[4] D. Chen, W. Cai, B. Zinser, and M. H. Cho, Accurate and efficient Nyström volume integral equation method for the Maxwell equations for multiple 3-d scatterers, J. Comput. Phys., 321 (2016), pp. 303–320, . · Zbl 1349.78110
[5] M. H. Cho and W. Cai, A parallel fast algorithm for computing the Helmholtz integral operator in 3-d layered media, J. Comput. Phys., 231 (2012), pp. 5910–5925, . · Zbl 1277.35143
[6] V. E. Ferry, M. A. Verschuuren, M. C. v. Lare, R. E. Schropp, H. A. Atwater, and A. Polman, Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-si:H solar cells, Nano Lett., 11 (2011), pp. 4239–4245, .
[7] J. Foo and G. E. Karniadakis, Multi-element probabilistic collocation method in high dimensions, J. Comput. Phys, 229 (2010), pp. 1536–1557, . · Zbl 1181.65014
[8] R. G. Ghanem and P. D. Spanos, Stochastic Finite Elements: A Spectral Approach, revised ed., Dover, New York, 2003. · Zbl 0722.73080
[9] D. T. Hristopulos, Spartan Gibbs random field models for geostatistical applications, SIAM J. Sci. Comput., 24 (2003), pp. 2125–2162, . · Zbl 1043.62078
[10] D. T. Hristopulos, Covariance functions motivated by spatial random field models with local interactions, Stochastic Environ. Res. Risk Assess., 29 (2015), pp. 739–754, .
[11] D. T. Hristopulos and S. N. Elogne, Analytic properties and covariance functions for a new class of generalized Gibbs random fields, IEEE Trans. Inform. Theory, 53 (2007), pp. 4667–4679, . · Zbl 1327.60106
[12] D. T. Hristopulos and E. Porcu, Multivariate Spartan spatial random field models, Probab. Eng. Mech., 37 (2014), pp. 84–92, .
[13] D. T. Hristopulos and I. C. Tsantili, Space-time models based on random fields with local interactions, Internat. J. Modern Phys. B, 30 (2016), 1541007, . · Zbl 1397.62610
[14] D. T. Hristopulos and M. Žukovič, Relationships between correlation lengths and integral scales for covariance models with more than two parameters, Stochastic Environ. Res. Risk Assess., 25 (2011), pp. 11–19, .
[15] D. Y. K. Ko and J. R. Sambles, Scattering matrix method for propagation of radiation in stratified media: Attenuated total reflection studies of liquid crystals, J. Opt. Soc. Amer. A, 5 (1988), pp. 1863–1866, .
[16] W. Krauth, Statistical Mechanics: Algorithms and Computations, Oxf. Master Ser. Phys. 13, Oxford University Press, Oxford, UK, 2006. · Zbl 1144.82002
[17] M. Loève, Probability Theory, Springer-Verlag, New York, 1978.
[18] B. Matérn, Spatial Variation, Lect. Notes Stat. 36, Springer Science & Business Media, Berlin, Heidelberg, 2013.
[19] A. Polman and H. A. Atwater, Photonic design principles for ultrahigh-efficiency photovoltaics, Nat. Mater., 11 (2012), pp. 174–177, .
[20] F. Riboli, P. Barthelemy, S. Vignolini, F. Intonti, A. De Rossi, S. Combrie, and D. S. Wiersma, Anderson localization of near-visible light in two dimensions, Opt. Lett., 36 (2011), pp. 127–129, .
[21] P. D. Spanos, M. Beer, and J. Red-Horse, Karhunen–Loève expansion of stochastic processes with a modified exponential covariance kernel, J. Eng. Mech., 133 (2007), pp. 773–779, .
[22] I. C. Tsantili and D. T. Hristopulos, Karhunen-Loève expansion of Spartan spatial random fields, Probab. Eng. Mech., 43 (2016), pp. 132–147, .
[23] K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, Photon management in two-dimensional disordered media, Nat. Mater., 11 (2012), pp. 1017–1022, .
[24] D. S. Wiersma, Disordered photonics, Nat. Photonics, 7 (2013), pp. 188–196, .
[25] D. Xiu and J. S. Hesthaven, High-order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput., 27 (2005), pp. 1118–1139, . · Zbl 1091.65006
[26] D. Xiu and G. E. Karniadakis, The Wiener-Aaskey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24 (2002), pp. 619–644, . · Zbl 1014.65004
[27] A. M. Yaglom, Correlation Theory of Stationary and Related Random Functions. Volume I: Basic Results, Springer-Verlag, New York, 1987. · Zbl 0685.62077
[28] X. Yang, M. Choi, and G. E. Karniadakis, MEPCMP version \(1.01\), , 2011–2012.
[29] X. Yang, M. Choi, G. Lin, and G. E. Karniadakis, Adaptive ANOVA decomposition of stochastic incompressible and compressible flows, J. Comput. Phys., 231 (2012), pp. 1587–1614, . · Zbl 1408.76428
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.