×

Pointwise estimates for a class of strongly degenerate elliptic operators: A geometrical approach. (English) Zbl 0685.35046

The authors extend to a class of strongly degenerate, second order, elliptic operators the Harnack inequality and the Hölder continuity of weak solutions. Reference is made to previous work in this general direction and it is pointed out that two of the main, and independent, approaches can be unified in the setting of homogeneous metric spaces. This unified approach enables the proposed extensions to be made. The proofs of the main results are obtained by adjusting the classical Moser technique to the geometry of the homogeneous space. An essential tool is a weighted Sobolev embedding theorem which is obtained by using a representation formula for a function u closely fitting the geometry of the operator and substituting the usual representation of u as a fractional integral of its gradient. The technical difficulties are eased by some well chosen examples.
Reviewer: G.F.Roach

MSC:

35J70 Degenerate elliptic equations
35B45 A priori estimates in context of PDEs
35D10 Regularity of generalized solutions of PDE (MSC2000)
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
PDF BibTeX XML Cite
Full Text: Numdam EuDML

References:

[1] N. Burger , ” Espace des fonctions a variation moyenne bornee sur un espace de nature homogene ”. C.R. Acad. Sc. Paris 236 ( 1978 ) Serie A , 139 - 142 . MR 467176 | Zbl 0368.46037 · Zbl 0368.46037
[2] A.P. Calderon , ” Inequalities for the maximal function relative to a metric ”. Studia Mathematica 57 ( 1976 ), 297 - 306 . Article | MR 442579 | Zbl 0341.44007 · Zbl 0341.44007
[3] R.R. Coifman - G. Weiss , ” Analyse harmonique non-commutative sur certains espaces homogenes ”. Lecture Notes in Mathematics . 242 . Springer-Verlag , 1971 . MR 499948 | Zbl 0224.43006 · Zbl 0224.43006
[4] R.R. Coifman - G. Weiss , ” Extension of Hardy spaces and their use in analysis ”. Bull. American Math. Soc. 83 ( 1977 ), 569 - 645 . Article | MR 447954 | Zbl 0358.30023 · Zbl 0358.30023
[5] S. Chanillo - R.L. Wheeden , ” Harnack’s Inequality and Mean Value Inequalities for Solutions of Degenerate Elliptic Equations ”. Comm. in Partial Differential Equations 11 ( 1986 ), 1111 - 1134 . MR 847996 | Zbl 0634.35035 · Zbl 0634.35035
[6] E. Di Benedetto - N. Trudinger , ” Harnack Inequalities for quasi minima of variational integrals ” Annales de l’Institute Henri Poincaré. Analyse non lineare 1 ( 1984 ), 295 - 308 . Numdam | MR 778976 | Zbl 0565.35012 · Zbl 0565.35012
[7] B. Franchi - E. Lanconelli , ” Une metrique associee a una classe d’operateurs elliptiques degeneres ”; Proceedings of the meeting-Linear Partial and Pseudo differential Operators . Rend. Sem. Mat. Univ. e Politec . Torino ( 1982 ). Zbl 0553.35033 · Zbl 0553.35033
[8] B. Franchi - E. Lanconelii , ” Holder regularity theorem for a class of linear non uniformly elliptic operators with measurable coefficients ”. Ann. Scuola Norm. Sup. Pisa 4 ( 1983 ), 523 - 541 . Numdam | MR 753153 | Zbl 0552.35032 · Zbl 0552.35032
[9] B. Franchi - E. Lanconelli , ” An embedding theorem for Sobolev spaces related to non smooth vector fields and Harnack inequality ”. Comm. in Partial Differential Equations 9 ( 1984 ), 1237 - 1264 . MR 764663 | Zbl 0589.46023 · Zbl 0589.46023
[10] E. Fabes - C. Kenig - R. Serapioni , ” The local regularity of solutions of degenerate elliptic equations ”. Comm. in Partial Differential Equations 7 ( 1982 ), 77 - 116 . MR 643158 | Zbl 0498.35042 · Zbl 0498.35042
[11] C. Fefferman - D. Phong , ” Subelliptic eigenvalue problems ”. Conference on Harmonic Analysis ( Chicago 1981 ) W. Beckner et al. ed., Wadsworth ( 1981 ), 590 - 606 . MR 730094 | Zbl 0503.35071 · Zbl 0503.35071
[12] D. Jerison , ” The Poincaré inequality for vector fields satisfying Hormander’s condition ”. Duke Math. J. 53 ( 1986 ), 503 - 524 . Article | MR 850547 | Zbl 0614.35066 · Zbl 0614.35066
[13] D. Kinderlehrer - G. Stampacchia , ” An introduction to variational inequalities and their applications ”. Academic Press ( 1980 ). MR 567696 | Zbl 0457.35001 · Zbl 0457.35001
[14] A. Nagel - E.M. Stein - S. Wainger , ” Balls and metrics defined by vector fields I: Basic properties ”. Acta Mathematica , 155 ( 1985 ), 103 - 147 . MR 793239 | Zbl 0578.32044 · Zbl 0578.32044
[15] V. Scornazzani , ” Pointwise Estimates for Minimizers of Some Non-Uniformly Degenerate Functionals ”. To appear. Numdam | Zbl 0699.49011 · Zbl 0699.49011
[16] G. Stampacchia , ” Le probleme de Dirichlet pour les equations elliptiques du second ordre a coefficients discontinus ”. Ann. Inst. Fourier Grenoble 15 ( 1965 ), 189 - 258 .. Numdam | MR 192177 | Zbl 0151.15401 · Zbl 0151.15401
[17] E.M. Stein , ” Singular integrals and differentiability properties of functions ”. Princeton Univ. Press. Princeton N.J. 1970 . MR 290095 | Zbl 0207.13501 · Zbl 0207.13501
[18] E.W. Stredulinsky , ” Weighted Inequalities and Degenerate Elliptic Partial Differential Equations ”. Lecture Notes in Mathematics 1074 Springer-Verlag 1984 . MR 757718 | Zbl 0541.35001 · Zbl 0541.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.