zbMATH — the first resource for mathematics

Noncommutative stochastic processes with independent and stationary increments satisfy quantum stochastic differential equations. (English) Zbl 0685.60070
See the preview in Zbl 0668.60058.

60H99 Stochastic analysis
60K35 Interacting random processes; statistical mechanics type models; percolation theory
81P20 Stochastic mechanics (including stochastic electrodynamics)
46L51 Noncommutative measure and integration
46L53 Noncommutative probability and statistics
46L54 Free probability and free operator algebras
Full Text: DOI
[1] Abe, E.: Hopf algebras. Cambridge: Cambridge University Press 1980 · Zbl 0476.16008
[2] Accardi, L., Frigerio, A., Lewis, J.T.: Quantum stochastic processes. Publ. RIMS Kyoto Univ.18, 97-133 (1982) · Zbl 0498.60099 · doi:10.2977/prims/1195184017
[3] Accardi, L., Schürmann, M., Waldenfels, W. v.: Quantum independent increment processes on superalgebras. Math. Z.198, 451-477 (1988) · Zbl 0627.60014 · doi:10.1007/BF01162868
[4] Glockner, P., Waldenfels, W. v.: The relations of the non-commutative coefficient algebra of the unitary group. SFB-Preprint Nr. 460, Heidelberg 1988
[5] Guichardet, A.: Symmetric Hilbert spaces and related topics. (Lect. Notes Math., vol. 261). Berlin Heidelberg New York: Springer 1972 · Zbl 0265.43008
[6] Heyer, H.: Probability measures on locally compact groups. Berlin Heidelberg New York: Springer 1977 · Zbl 0376.60002
[7] Hochschild, G.: On the cohomology groups of an associative algebra. Ann. Math.46, 58-67 (1945) · Zbl 0063.02029 · doi:10.2307/1969145
[8] Hudson, R.L., Parthasarathy, K.R.: Quantum Ito’s formula and stochastic evolutions. Commun. Math. Phys.93, 301-323 (1984) · Zbl 0546.60058 · doi:10.1007/BF01258530
[9] Hudson, R.L., Lindsay, J.M.: On characterising quantum stochastic evolutions. Math. Proc. Camb. Philos. Soc.102, 363-369 (1987) · Zbl 0644.46046 · doi:10.1017/S0305004100067372
[10] Parthasarathy, K.R., Schmidt, K.: Positive definite kernels, continuous tensor products, and central limit theorems of probability theory. (Lect. Notes Math., vol. 272). Berlin Heidelber New York: Springer 1972 · Zbl 0237.43005
[11] Schürmann, M.: Positive and conditionally positive linear functionals on coalgebras. In: Accardi, L., Waldenfels, W. v. (eds.) Quantum Probability and Applications II. Proceedings, Heidelberg 1984. (Lect. Notes Math., vol. 1136). Berlin Heidelberg New York: Springer 1985 · Zbl 0581.16007
[12] Schürmann, M.: Über*-Bialgebren und quantenstochastische Zuwachsprozesse. Heidelberg: Dissertation 1985 · Zbl 0624.60012
[13] Sweedler, M.E.: Hopf algebras. New York: Benjamin 1969 · Zbl 0194.32901
[14] Waldenfels, W. v.: Ito solution of the linear quantum stochastic differential equation describing light emission and absorption. In: Accardi, L., Frigerio, A., Gorini, V. (eds.) Quantum probability and applications to the theory of irreversible processes. Proceedings, Villa Mondragone 1982. (Lect. Notes Math., vol. 1055). Berlin Heidelberg New York: Springer 1984
[15] Zink, F.: Generatoren quantenstochastischer Prozesse. Heidelberg: Diplomarbeit 1988
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.