zbMATH — the first resource for mathematics

An effective formalism for testing extensions to general relativity with gravitational waves. (English) Zbl 1382.83086
Summary: The recent direct observation of gravitational waves (GW) from merging black holes opens up the possibility of exploring the theory of gravity in the strong regime at an unprecedented level. It is therefore interesting to explore which extensions to General Relativity (GR) could be detected. We construct an Effective Field Theory (EFT) satisfying the following requirements. It is testable with GW observations; it is consistent with other experiments, including short distance tests of GR; it agrees with widely accepted principles of physics, such as locality, causality and unitarity; and it does not involve new light degrees of freedom. The most general theory satisfying these requirements corresponds to adding to the GR Lagrangian operators constructed out of powers of the Riemann tensor, suppressed by a scale comparable to the curvature of the observed merging binaries. The presence of these operators modifies the gravitational potential between the compact objects, as well as their effective mass and current quadrupoles, ultimately correcting the waveform of the emitted GW.

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C35 Gravitational waves
83C57 Black holes
81T10 Model quantum field theories
53Z05 Applications of differential geometry to physics
Invar; NP; NPspinor; xTensor
Full Text: DOI
[1] Virgo, LIGO Scientific collaborations, B.P. Abbott et al., Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett.116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].
[2] Virgo, LIGO Scientific collaborations, B.P. Abbott et al., GW150914: First results from the search for binary black hole coalescence with Advanced LIGO, Phys. Rev.D 93 (2016) 122003 [arXiv:1602.03839] [INSPIRE]. · Zbl 1388.83093
[3] Virgo, LIGO Scientific collaborations, B.P. Abbott et al., GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence, Phys. Rev. Lett.116 (2016) 241103 [arXiv:1606.04855] [INSPIRE].
[4] Arvanitaki, A.; Dubovsky, S., Exploring the string axiverse with precision black hole physics, Phys. Rev., D 83, (2011)
[5] Arvanitaki, A.; Baryakhtar, M.; Huang, X., Discovering the QCD axion with black holes and gravitational waves, Phys. Rev., D 91, (2015)
[6] Arvanitaki, A.; Baryakhtar, M.; Dimopoulos, S.; Dubovsky, S.; Lasenby, R., Black hole mergers and the QCD axion at advanced LIGO, Phys. Rev., D 95, (2017)
[7] Virgo, LIGO Scientific collaborations, B.P. Abbott et al., Tests of general relativity with GW150914, Phys. Rev. Lett.116 (2016) 221101 [arXiv:1602.03841] [INSPIRE].
[8] Yunes, N.; Yagi, K.; Pretorius, F., Theoretical physics implications of the binary black-hole mergers GW150914 and GW151226, Phys. Rev., D 94, (2016)
[9] Dodelson, M.; Silverstein, E., String-theoretic breakdown of effective field theory near black hole horizons, Phys. Rev., D 96, (2017)
[10] S. Weinberg, The Quantum theory of fields. Vol. 1: Foundations, Cambridge University Press (2005). · Zbl 1069.81501
[11] Adams, A.; Arkani-Hamed, N.; Dubovsky, S.; Nicolis, A.; Rattazzi, R., Causality, analyticity and an IR obstruction to UV completion, JHEP, 10, 014, (2006)
[12] Gruzinov, A.; Kleban, M., Causality constrains higher curvature corrections to gravity, Class. Quant. Grav., 24, 3521, (2007) · Zbl 1120.83037
[13] Camanho, XO; Edelstein, JD; Maldacena, J.; Zhiboedov, A., Causality constraints on corrections to the graviton three-point coupling, JHEP, 02, 020, (2016) · Zbl 1388.83093
[14] Bellazzini, B.; Cheung, C.; Remmen, GN, Quantum gravity constraints from unitarity and analyticity, Phys. Rev., D 93, (2016)
[15] Carminati, J.; McLenaghan, RG, Algebraic invariants of the Riemann tensor in a four-dimensional Lorentzian space, J. Math. Phys., 32, 3135, (1991) · Zbl 0736.76081
[16] S.A. Fulling, R.C. King, B.G. Wybourne and C.J. Cummins, Normal forms for tensor polynomials. 1: The Riemann tensor, Class. Quant. Grav.9 (1992) 1151 [INSPIRE]. · Zbl 0991.53517
[17] Martin-Garcia, JM; Yllanes, D.; Portugal, R., The invar tensor package: differential invariants of Riemann, Comput. Phys. Commun., 179, 586, (2008) · Zbl 1197.15001
[18] Drummond, IT; Hathrell, SJ, QED vacuum polarization in a background gravitational field and its effect on the velocity of photons, Phys. Rev., D 22, 343, (1980)
[19] N. Afkhami-Jeddi, T. Hartman, S. Kundu and A. Tajdini, Einstein gravity 3-point functions from conformal field theory, arXiv:1610.09378 [INSPIRE]. · Zbl 1383.83024
[20] F. Pretorius, Evolution of binary black hole spacetimes, Phys. Rev. Lett.95 (2005) 121101 [gr-qc/0507014] [INSPIRE]. · Zbl 1191.83026
[21] Okounkova, M.; Stein, LC; Scheel, MA; Hemberger, DA, Numerical binary black hole mergers in dynamical Chern-Simons gravity: scalar field, Phys. Rev., D 96, (2017)
[22] J. Cayuso, N. Ortiz and L. Lehner, Fixing extensions to General Relativity in the non-linear regime, arXiv:1706.07421 [INSPIRE]. · Zbl 1359.83024
[23] Goldberger, WD; Rothstein, IZ, An effective field theory of gravity for extended objects, Phys. Rev., D 73, 104029, (2006)
[24] Neill, D.; Rothstein, IZ, Classical space-times from the S matrix, Nucl. Phys., B 877, 177, (2013) · Zbl 1284.83052
[25] Goldberger, WD; Ross, A., Gravitational radiative corrections from effective field theory, Phys. Rev., D 81, 124015, (2010)
[26] M. Maggiore, Gravitational Waves. Vol. 1: Theory and Experiments, Oxford Master Series in Physics, Oxford University Press (2007).
[27] Wagner, TA; Schlamminger, S.; Gundlach, JH; Adelberger, EG, Torsion-balance tests of the weak equivalence principle, Class. Quant. Grav., 29, 184002, (2012)
[28] Smith, GL; Hoyle, CD; Gundlach, JH; Adelberger, EG; Heckel, BR; Swanson, HE, Short range tests of the equivalence principle, Phys. Rev., D 61, (2000)
[29] S. Dimopoulos, P.W. Graham, J.M. Hogan and M.A. Kasevich, Testing general relativity with atom interferometry, Phys. Rev. Lett.98 (2007) 111102 [gr-qc/0610047] [INSPIRE].
[30] Taylor, JH; Weisberg, JM, A new test of general relativity: gravitational radiation and the binary pulsar PS R 1913+16, Astrophys. J., 253, 908, (1982)
[31] S.G. Turyshev and J.G. Williams, Space-based tests of gravity with laser ranging, Int. J. Mod. Phys.D 16 (2007) 2165 [gr-qc/0611095] [INSPIRE].
[32] McClintock, JE; Remillard, RA, The black hole binary A0620-00, Astrophys. J., 308, 110, (1986)
[33] J.A. Orosz, J.E. McClintock, R.A. Remillard and S. Corbel, Orbital parameters for the black hole binary XTE J1650-500, Astrophys. J.616 (2004) 376 [astro-ph/0404343] [INSPIRE].
[34] Hoskins, JK; Newman, RD; Spero, R.; Schultz, J., Experimental tests of the gravitational inverse square law for mass separations from 2-cm to 105-cm, Phys. Rev., D 32, 3084, (1985)
[35] D.J. Kapner et al., Tests of the gravitational inverse-square law below the dark-energy length scale, Phys. Rev. Lett.98 (2007) 021101 [hep-ph/0611184] [INSPIRE].
[36] Geraci, AA; Smullin, SJ; Weld, DM; Chiaverini, J.; Kapitulnik, A., Improved constraints on non-Newtonian forces at 10 microns, Phys. Rev., D 78, (2008)
[37] Adelberger, EG; Gundlach, JH; Heckel, BR; Hoedl, S.; Schlamminger, S., Torsion balance experiments: A low-energy frontier of particle physics, Prog. Part. Nucl. Phys., 62, 102, (2009)
[38] Reynolds, CS, Measuring black hole spin using X-ray reflection spectroscopy, Space Sci. Rev., 183, 277, (2014)
[39] Bambi, C., Testing the Bardeen metric with the black hole candidate in cygnus X-1, Phys. Lett., B 730, 59, (2014)
[40] Bambi, C., Attempt to explain black hole spin in X-ray binaries by new physics, Eur. Phys. J., C 75, 22, (2015)
[41] McClintock, JE; Narayan, R.; Steiner, JF, Black hole spin via continuum Fitting and the role of spin in powering transient jets, Space Sci. Rev., 183, 295, (2014)
[42] W.D. Goldberger, Les Houches lectures on effective field theories and gravitational radiation, hep-ph/0701129 [INSPIRE].
[43] Porto, RA, The effective field theorist’s approach to gravitational dynamics, Phys. Rept., 633, 1, (2016) · Zbl 1359.83024
[44] R.A. Porto, Post-Newtonian corrections to the motion of spinning bodies in NRGR, Phys. Rev.D 73 (2006) 104031 [gr-qc/0511061] [INSPIRE].
[45] J.C. Collins, Renormalization, Cambridge Monographs on Mathematical Physics, vol. 26, Cambridge University Press, Cambridge (1986).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.