Evolution of the Wasserstein distance between the marginals of two Markov processes. (English) Zbl 1428.60124

Summary: In this paper, we are interested in the time derivative of the Wasserstein distance between the marginals of two Markov processes. As recalled in the introduction, the Kantorovich duality leads to a natural candidate for this derivative. Up to the sign, it is the sum of the integrals with respect to each of the two marginals of the corresponding generator applied to the corresponding Kantorovich potential. For pure jump processes with bounded intensity of jumps, we prove that the evolution of the Wasserstein distance is actually given by this candidate. In dimension one, we show that this remains true for piecewise deterministic Markov processes. We apply the formula to estimate the exponential decrease rate of the Wasserstein distance between the marginals of two birth and death processes with the same generator in terms of the Wasserstein curvature.


60J74 Jump processes on discrete state spaces
60B10 Convergence of probability measures
49Q20 Variational problems in a geometric measure-theoretic setting
Full Text: DOI arXiv Euclid


[1] Alfonsi, A., Jourdain, B. and Kohatsu-Higa, A. (2014). Pathwise optimal transport bounds between a one-dimensional diffusion and its Euler scheme. Ann. Appl. Probab. 24 1049-1080. · Zbl 1296.65010
[2] Alfonsi, A., Jourdain, B. and Kohatsu-Higa, A. (2015). Optimal transport bounds between the time-marginals of a multidimensional diffusion and its Euler scheme. Electron. J. Probab. 20 no. 70, 31. · Zbl 06471548
[3] Ambrosio, L., Gigli, N. and Savaré, G. (2008). Gradient Flows in Metric Spaces and in the Space of Probability Measures , 2nd ed. Lectures in Mathematics ETH Zürich . Basel: Birkhäuser.
[4] Bardet, J.-B., Christen, A., Guillin, A., Malrieu, F. and Zitt, P.-A. (2013). Total variation estimates for the TCP process. Electron. J. Probab. 18 no. 10, 21. · Zbl 1283.68067
[5] Bolley, F., Gentil, I. and Guillin, A. (2012). Convergence to equilibrium in Wasserstein distance for Fokker-Planck equations. J. Funct. Anal. 263 2430-2457. · Zbl 1253.35183
[6] Bolley, F., Gentil, Y. and Guillin, A. (2013). Uniform convergence to equilibrium for granular media. Arch. Ration. Mech. Anal. 208 429-445. · Zbl 1264.35040
[7] Chafaï, D. and Joulin, A. (2013). Intertwining and commutation relations for birth – death processes. Bernoulli 19 1855-1879. · Zbl 1286.60084
[8] Eberle, A. (2016). Reflection couplings and contraction rates for diffusions. Probab. Theory Related Fields 166 851-886. · Zbl 1367.60099
[9] Ikeda, N. and Watanabe, S. (1989). Stochastic Differential Equations and Diffusion Processes , 2nd ed. North-Holland Mathematical Library 24 . · Zbl 0684.60040
[10] Jacod, J. and Shiryaev, A.N. (1987). Limit Theorems for Stochastic Processes. Fundamental Principles of Mathematical Sciences 288 . Berlin: Springer. · Zbl 0635.60021
[11] Joulin, A. (2007). Poisson-type deviation inequalities for curved continuous-time Markov chains. Bernoulli 13 782-798. · Zbl 1131.60069
[12] Joulin, A. (2009). A new Poisson-type deviation inequality for Markov jump processes with positive Wasserstein curvature. Bernoulli 15 532-549. · Zbl 1202.60136
[13] Lepeltier, J.-P. and Marchal, B. (1976). Problème des martingales et équations différentielles stochastiques associées à un opérateur intégro-différentiel. Ann. Inst. Henri Poincaré B , Probab. Stat. 12 43-103. · Zbl 0345.60029
[14] Luo, D. and Wang, J. (2016). Exponential convergence in \(L^{p}\)-Wasserstein distance for diffusion processes without uniformly dissipative drift. Math. Nachr. 289 1090-1926. · Zbl 1350.60079
[15] Luo, D. and Wang, J. (2016). Refined basic couplings and Wasserstein-type distances for SDEs with Lévy noises. Preprint. Available at arXiv:1604.07206 .
[16] Rachev, S.T. and Rüschendorf, L. (1998). Mass Transportation Problems : Volume I : Theory . New York: Springer Science & Business Media.
[17] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion , 3rd ed. Grundlehren der Mathematischen Wissenschaften [ Fundamental Principles of Mathematical Sciences ] 293 . Berlin: Springer. · Zbl 0917.60006
[18] Villani, C. (2008). Optimal Transport : Old and New 338 . New York: Springer Science & Business Media.
[19] von Renesse, M.-K. and Sturm, K.-T. (2005). Transport inequalities, gradient estimates, entropy, and Ricci curvature. Comm. Pure Appl. Math. 58 923-940. · Zbl 1078.53028
[20] Wang, F.-Y. (2016). Exponential contraction in Wasserstein distance for diffusion semigroups with negative curvature. Preprint. Availabel at arXiv:1603.05749 .
[21] Wang, J. · Zbl 1348.60087
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.