×

Concentration and moderate deviations for Poisson polytopes and polyhedra. (English) Zbl 1429.60020

Summary: The convex hull generated by the restriction to the unit ball of a stationary Poisson point process in the \(d\)-dimensional Euclidean space is considered. By establishing sharp bounds on cumulants, exponential estimates for large deviation probabilities are derived and the relative error in the central limit theorem on a logarithmic scale is investigated for a large class of key geometric characteristics. This includes the number of lower-dimensional faces and the intrinsic volumes of the random polytopes. Furthermore, moderate deviation principles for the spatial empirical measures induced by these functionals are also established using the method of cumulants. The results are applied to a class of zero cells associated with Poisson hyperplane mosaics. As a special case, this comprises the typical Poisson-Voronoi cell conditioned on having large inradius.

MSC:

60D05 Geometric probability and stochastic geometry
60F10 Large deviations
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] Affentranger, F. (1988). The expected volume of a random polytope in a ball. J. Microscopy 151 277-287.
[2] Bárány, I. (1989). Intrinsic volumes and \(f\)-vectors of random polytopes. Math. Ann. 285 671-699. · Zbl 0696.52005
[3] Bárány, I. (1992). Random polytopes in smooth convex bodies. Mathematika 39 81-92. · Zbl 0765.52009
[4] Bárány, I. (2007). Random polytopes, convex bodies, and approximation. In Stochastic Geometry (W. Weil, ed.). Lecture Notes in Math. 1892 77-118. Berlin: Springer.
[5] Bárány, I. and Reitzner, M. (2010). On the variance of random polytopes. Adv. Math. 225 1986-2001. · Zbl 1204.52007
[6] Bárány, I. and Reitzner, M. (2010). Poisson polytopes. Ann. Probab. 38 1507-1531. · Zbl 1204.60018
[7] Baryshnikov, Yu. and Yukich, J.E. (2005). Gaussian limits for random measures in geometric probability. Ann. Appl. Probab. 15 213-253. · Zbl 1068.60028
[8] Borgwardt, K.-H. (1987). The Simplex Method : A Probabilistic Analysis. Algorithms and Combinatorics : Study and Research Texts 1 . Berlin: Springer.
[9] Böröczky, K.J. Jr., Hoffmann, L.M. and Hug, D. (2008). Expectation of intrinsic volumes of random polytopes. Period. Math. Hungar. 57 143-164. · Zbl 1265.52004
[10] Brazitikos, S., Giannopoulos, A., Valettas, P. and Vritsiou, B.-H. (2014). Geometry of Isotropic Convex Bodies. Mathematical Surveys and Monographs 196 . Providence, RI: Amer. Math. Soc. · Zbl 1304.52001
[11] Buchta, C. and Müller, J. (1984). Random polytopes in a ball. J. Appl. Probab. 21 753-762. · Zbl 0552.60006
[12] Cabo, A.J. and Groeneboom, P. (1994). Limit theorems for functionals of convex hulls. Probab. Theory Related Fields 100 31-55. · Zbl 0808.60019
[13] Calka, P. (2013). Asymptotic methods for random tessellations. In Stochastic Geometry , Spatial Statistics and Random Fields (E. Spodarev, ed.). Lecture Notes in Math. 2068 183-204. Heidelberg: Springer. · Zbl 1296.60019
[14] Calka, P. and Schreiber, T. (2005). Limit theorems for the typical Poisson-Voronoi cell and the Crofton cell with a large inradius. Ann. Probab. 33 1625-1642. · Zbl 1084.60008
[15] Calka, P. and Schreiber, T. (2006). Large deviation probabilities for the number of vertices of random polytopes in the ball. Adv. in Appl. Probab. 38 47-58. · Zbl 1099.60009
[16] Calka, P., Schreiber, T. and Yukich, J.E. (2013). Brownian limits, local limits and variance asymptotics for convex hulls in the ball. Ann. Probab. 41 50-108. · Zbl 1278.60020
[17] Calka, P. and Yukich, J.E. (2014). Variance asymptotics for random polytopes in smooth convex bodies. Probab. Theory Related Fields 158 435-463. · Zbl 1291.60043
[18] Dembo, A. and Zeitouni, O. (2010). Large Deviations Techniques and Applications. Stochastic Modelling and Applied Probability 38 . Berlin: Springer. · Zbl 1177.60035
[19] Döring, H. and Eichelsbacher, P. (2013). Moderate deviations via cumulants. J. Theoret. Probab. 26 360-385. · Zbl 1286.60032
[20] Eichelsbacher, P., Raič, M. and Schreiber, T. (2015). Moderate deviations for stabilizing functionals in geometric probability. Ann. Inst. Henri Poincaré Probab. Stat. 51 89-128. · Zbl 1312.60033
[21] Groeneboom, P. (1988). Limit theorems for convex hulls. Probab. Theory Related Fields 79 327-368. · Zbl 0635.60012
[22] Hörrmann, J. and Hug, D. (2014). On the volume of the zero cell of a class of isotropic Poisson hyperplane tessellations. Adv. in Appl. Probab. 46 622-642. · Zbl 1319.60013
[23] Hörrmann, J., Hug, D., Reitzner, M. and Thäle, C. (2015). Poisson polyhedra in high dimensions. Adv. Math. 281 1-39.
[24] Hsing, T. (1994). On the asymptotic distribution of the area outside a random convex hull in a disk. Ann. Appl. Probab. 4 478-493. · Zbl 0806.60004
[25] Hueter, I. (1999). Limit theorems for the convex hull of random points in higher dimensions. Trans. Amer. Math. Soc. 351 4337-4363. · Zbl 0944.60018
[26] Hug, D. (2013). Random polytopes. In Stochastic Geometry , Spatial Statistics and Random Fields (E. Spodarev, ed.). Lecture Notes in Math. 2068 205-238. Heidelberg: Springer. · Zbl 1275.60017
[27] Hug, D. and Schneider, R. (2007). Asymptotic shapes of large cells in random tessellations. Geom. Funct. Anal. 17 156-191. · Zbl 1114.60012
[28] Küfer, K.-H. (1994). On the approximation of a ball by random polytopes. Adv. in Appl. Probab. 26 876-892. · Zbl 0812.60017
[29] Müller, J.S. (1990). Approximation of a ball by random polytopes. J. Approx. Theory 63 198-209. · Zbl 0736.41027
[30] Pardon, J. (2011). Central limit theorems for random polygons in an arbitrary convex set. Ann. Probab. 39 881-903. · Zbl 1221.52011
[31] Reitzner, M. (2003). Random polytopes and the Efron-Stein jackknife inequality. Ann. Probab. 31 2136-2166. · Zbl 1058.60010
[32] Reitzner, M. (2004). Stochastic approximation of smooth convex bodies. Mathematika 51 11-29. · Zbl 1109.52007
[33] Reitzner, M. (2005). The combinatorial structure of random polytopes. Adv. Math. 191 178-208. · Zbl 1065.52004
[34] Reitzner, M. (2005). Central limit theorems for random polytopes. Probab. Theory Related Fields 133 483-507. · Zbl 1081.60008
[35] Reitzner, M. (2010). Random polytopes. In New Perspectives in Stochastic Geometry (W.S. Kendall and I. Molchanov, eds.) 45-76. Oxford: Oxford Univ. Press. · Zbl 1202.60025
[36] Rényi, A. and Sulanke, R. (1963). Über die konvexe Hülle von \(n\) zufällig gewählten Punkten. Z. Wahrsch. Verw. Gebiete 2 75-84. · Zbl 0118.13701
[37] Saulis, L. and Statulevičius, V.A. (1991). Limit Theorems for Large Deviations. Mathematics and Its Applications ( Soviet Series ) 73 . Dordrecht: Kluwer Academic.
[38] Schneider, R. and Weil, W. (2008). Stochastic and Integral Geometry. Probability and Its Applications ( New York ). Berlin: Springer. · Zbl 1175.60003
[39] Schreiber, T. (2002). Variance asymptotics and central limit theorems for volumes of unions of random closed sets. Adv. in Appl. Probab. 34 520-539. · Zbl 1018.60012
[40] Schreiber, T. (2003). Asymptotic geometry of high-density smooth-grained Boolean models in bounded domains. Adv. in Appl. Probab. 35 913-936. · Zbl 1041.60014
[41] Schreiber, T. and Yukich, J.E. (2008). Variance asymptotics and central limit theorems for generalized growth processes with applications to convex hulls and maximal points. Ann. Probab. 36 363-396. · Zbl 1130.60031
[42] Schütt, C. (1994). Random polytopes and affine surface area. Math. Nachr. 170 227-249.
[43] Vu, V. (2006). Central limit theorems for random polytopes in a smooth convex set. Adv. Math. 207 221-243. · Zbl 1111.52010
[44] Vu, V.H. (2005). Sharp concentration of random polytopes. Geom. Funct. Anal. 15 1284-1318. · Zbl 1094.52002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.