×

MPDATA: third-order accuracy for variable flows. (English) Zbl 1384.86008

Summary: This paper extends the multidimensional positive definite advection transport algorithm (MPDATA) to third-order accuracy for temporally and spatially varying flows. This is accomplished by identifying the leading truncation error of the standard second-order MPDATA, performing the Cauchy-Kowalevski procedure to express it in a spatial form and compensating its discrete representation – much in the same way as the standard MPDATA corrects the first-order accurate upwind scheme. The procedure of deriving the spatial form of the truncation error was automated using a computer algebra system. This enables various options in MPDATA to be included straightforwardly in the third-order scheme, thereby minimising the implementation effort in existing code bases. Following the spirit of MPDATA, the error is compensated using the upwind scheme resulting in a sign-preserving algorithm, and the entire scheme can be formulated using only two upwind passes. Established MPDATA enhancements, such as formulation in generalised curvilinear coordinates, the nonoscillatory option or the infinite-gauge variant, carry over to the fully third-order accurate scheme. A manufactured 3D analytic solution is used to verify the theoretical development and its numerical implementation, whereas global tracer-transport benchmarks demonstrate benefits for chemistry-transport models fundamental to air quality monitoring, forecasting and control. A series of explicitly-inviscid implicit large-eddy simulations of a convective boundary layer and explicitly-viscid simulations of a double shear layer illustrate advantages of the fully third-order-accurate MPDATA for fluid dynamics applications.

MSC:

86A10 Meteorology and atmospheric physics
76M20 Finite difference methods applied to problems in fluid mechanics
76R10 Free convection
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Richtmyer, R. D.; Morton, K. W., Difference Methods for Initial-Value Problems (1967) · Zbl 0155.47502
[2] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (2009) · Zbl 1227.76006
[3] Knoll, D. A.; Chacon, L.; Margolin, L. G.; Mousseau, V. A., On balanced approximations for time integration of multiple time scale systems, J. Comput. Phys., 185, 583-611 (2003) · Zbl 1047.76074
[4] Jarecka, D.; Jaruga, A.; Smolarkiewicz, P. K., A spreading drop of shallow water, J. Comput. Phys., 289, 53-61 (2015) · Zbl 1351.76010
[5] Roache, P. J., Computational Fluid Dynamics (1972) · Zbl 0251.76002
[6] Kreiss, H.-O.; Oliger, J., Comparison of accurate methods for the integration of hyperbolic equations, Tellus, 24, 199-215 (1972)
[7] Jaruga, A.; Arabas, S.; Jarecka, D.; Pawlowska, H.; Smolarkiewicz, P. K.; Waruszewski, M., libmpdata++ 1.0: a library of parallel MPDATA solvers for systems of generalised transport equations, Geosci. Model Dev., 8, 1005-1032 (2015)
[8] Wang, Z. J.; Fidkowski, K.; Abgrall, R.; Bassi, F.; Caraeni, D.; Cary, A.; Deconinck, H.; Hartmann, R.; Hillewaert, K.; Huynh, H. T., High-order CFD methods: current status and perspective, Int. J. Numer. Methods Fluids, 72, 811-845 (2013) · Zbl 1455.76007
[9] Ullrich, P. A., Understanding the treatment of waves in atmospheric models. Part 1: the shortest resolved waves of the 1D linearized shallow-water equations, Q. J. R. Meteorol. Soc., 140, 1426-1440 (2014)
[10] Ullrich, P. A.; Jablonowski, C., MCore: a non-hydrostatic atmospheric dynamical core utilizing high-order finite-volume methods, J. Comput. Phys., 231, 5078-5108 (2012) · Zbl 1247.86007
[11] Kelly, J. F.; Giraldo, F. X., Continuous and discontinuous Galerkin methods for a scalable three-dimensional nonhydrostatic atmospheric model: limited-area mode, J. Comput. Phys., 231, 7988-8008 (2012) · Zbl 1284.65134
[12] Skamarock, W. C.; Klemp, J. B.; Duda, M. G.; Fowler, L. D.; Park, S.-H.; Ringler, T. D., A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering, Mon. Weather Rev., 140, 3090-3105 (2012)
[13] Smolarkiewicz, P. K., A fully multidimensional positive definite advection transport algorithm with small implicit diffusion, J. Comput. Phys., 54, 325-362 (1984)
[14] Smolarkiewicz, P. K.; Margolin, L. G., MPDATA: a finite-difference solver for geophysical flows, J. Comput. Phys., 140, 459-480 (1998) · Zbl 0935.76064
[15] Smolarkiewicz, P. K.; Szmelter, J., MPDATA: an edge-based unstructured-grid formulation, J. Comput. Phys., 206, 624-649 (2005) · Zbl 1070.65080
[16] Kühnlein, C.; Smolarkiewicz, P. K., An unstructured-mesh finite-volume MPDATA for compressible atmospheric dynamics, J. Comput. Phys., 334, 16-30 (2017) · Zbl 1375.86007
[17] Smolarkiewicz, P. K.; Grabowski, W. W., The multidimensional positive definite advection transport algorithm: nonoscillatory option, J. Comput. Phys., 86, 355-375 (1990) · Zbl 0698.76100
[18] Lax, P.; Wendroff, B., Systems of conservation laws, Commun. Pure Appl. Math., 13, 217-237 (1960) · Zbl 0152.44802
[19] Smolarkiewicz, P. K.; Margolin, L. G., On forward-in-time differencing for fluids: extension to a curvilinear framework, Mon. Weather Rev., 121, 1847-1859 (1993)
[20] Margolin, L. G.; Smolarkiewicz, P. K.; Sorbjan, Z., Large-eddy simulations of convective boundary layers using nonoscillatory differencing, Physica D, 133, 390-397 (1999) · Zbl 1194.76083
[21] Margolin, L. G.; Smolarkiewicz, P. K.; Wyszogrodzki, A. A., Implicit turbulence modeling for high Reynolds number flows, J. Fluids Eng., 124, 862-867 (2002)
[22] Margolin, L. G.; Rider, W. J., A rationale for implicit turbulence modelling, Int. J. Numer. Methods Fluids, 39, 821-841 (2002) · Zbl 1014.76032
[23] Domaradzki, J. A.; Xiao, Z.; Smolarkiewicz, P. K., Effective eddy viscosities in implicit large eddy simulations of turbulent flows, Phys. Fluids, 15, 3890-3893 (2003) · Zbl 1186.76146
[24] Margolin, L. G.; Smolarkiewicz, P. K.; Wyszogradzki, A. A., Dissipation in implicit turbulence models: a computational study, J. Appl. Mech., 73, 469-473 (2006) · Zbl 1111.74545
[25] Margolin, L. G.; Rider, W. J.; Grinstein, F. F., Modeling turbulent flow with implicit LES, J. Turbul., 7, 1-27 (2006) · Zbl 1273.76213
[26] Strugarek, A.; Beaudoin, P.; Brun, A. S.; Charbonneau, P.; Mathis, S.; Smolarkiewicz, P. K., Modeling turbulent stellar convection zones: sub-grid scales effects, Adv. Space Res., 58, 1538-1553 (2016)
[27] Warn-Varnas, A.; Hawkins, J.; Smolarkiewicz, P. K.; Chin-Bing, S. A.; King, D.; Hallock, Z., Solitary wave effects north of Strait of Messina, Ocean Model., 18, 97-121 (2007)
[28] Prusa, J. M.; Smolarkiewicz, P. K.; Wyszogrodzki, A. A., EULAG, a computational model for multiscale flows, Comput. Fluids, 37, 1193-1207 (2008) · Zbl 1237.76107
[29] Piotrowski, Z. P.; Smolarkiewicz, P. K.; Malinowski, S. P.; Wyszogrodzki, A. A., On numerical realizability of thermal convection, J. Comput. Phys., 228, 6268-6290 (2009) · Zbl 1255.76123
[30] Ghizaru, M.; Charbonneau, P.; Smolarkiewicz, P. K., Magnetic cycles in global large-eddy simulations of solar convection, Astrophys. J. Lett., 715, L133-L137 (2010)
[31] Racine, É.; Charbonneau, P.; Ghizaru, M.; Bouchat, A.; Smolarkiewicz, P. K., On the mode of dynamo action in a global large-eddy simulation of solar convection, Astrophys. J., 735, 46-67 (2011)
[32] Kumar, D.; Bhattacharyya, R.; Smolarkiewicz, P. K., Repetitive formation and decay of current sheets in magnetic loops: an origin of diverse magnetic structures, Phys. Plasmas, 22, Article 012902 pp. (2015)
[33] Cossette, J.-F.; Charbonneau, P.; Smolarkiewicz, P. K.; Rast, M. P., Magnetically modulated heat transport in a global simulation of solar magneto-convection, Astrophys. J., 841, 65-81 (2017)
[34] Smolarkiewicz, P. K.; Kühnlein, C.; Wedi, N. P., A consistent framework for discrete integrations of soundproof and compressible PDEs of atmospheric dynamics, J. Comput. Phys., 263, 185-205 (2014) · Zbl 1349.86041
[35] Smolarkiewicz, P. K.; Charbonneau, P., EULAG, a computational model for multiscale flows: an MHD extension, J. Comput. Phys., 236, 608-623 (2013)
[36] Smolarkiewicz, P. K.; Deconinck, W.; Hamrud, M.; Kühnlein, C.; Mozdzynski, G.; Szmelter, J.; Wedi, N. P., A finite-volume module for simulating global all-scale atmospheric flows, J. Comput. Phys., 314, 287-304 (2016) · Zbl 1349.86012
[37] Smolarkiewicz, P. K.; Kühnlein, C.; Grabowski, W. W., A finite-volume module for cloud-resolving simulations of global atmospheric flows, J. Comput. Phys., 341, 208-229 (2017) · Zbl 1376.86006
[38] Margolin, L.; Smolarkiewicz, P. K., Antidiffusive velocities for multipass donor cell advection, SIAM J. Sci. Comput., 20, 907-929 (1998) · Zbl 0922.76255
[39] Nair, R. D.; Jablonowski, C., Moving vortices on the sphere: a test case for horizontal advection problems, Mon. Weather Rev., 136, 699-711 (2008)
[40] Lauritzen, P. H.; Skamarock, W. C.; Prather, M. J.; Taylor, M. A., A standard test case suite for two-dimensional linear transport on the sphere, Geosci. Model Dev., 5, 887-901 (2012)
[41] Drikakis, D.; Smolarkiewicz, P. K., On spurious vortical structures, J. Comput. Phys., 172, 309-325 (2001) · Zbl 1065.76567
[42] Drikakis, D.; Margolin, L.; Smolarkiewicz, P. K., On ‘spurious’ eddies, Int. J. Numer. Methods Fluids, 40, 313-322 (2002) · Zbl 1058.76581
[43] Warming, R. F.; Hyett, B. J., The modified equation approach to the stability and accuracy analysis of finite-difference methods, J. Comput. Phys., 14, 159-179 (1974) · Zbl 0291.65023
[44] Kühnlein, C.; Smolarkiewicz, P. K.; Dörnbrack, A., Modelling atmospheric flows with adaptive moving meshes, J. Comput. Phys., 231, 2741-2763 (2012) · Zbl 1426.76390
[45] Roache, P. J., Code verification by the method of manufactured solutions, J. Fluids Eng., 124, 4-10 (2002)
[46] Pudykiewicz, J., Simulation of the Chernobyl dispersion with a 3-D hemispheric tracer model, Tellus B, 41, 391-412 (1989)
[47] Hundsdorfer, W.; Koren, B.; van Loon, M.; Verwer, J. G., A positive finite-difference advection scheme, J. Comput. Phys., 117, 35-46 (1995) · Zbl 0860.65073
[48] Frohn, L. M.; Christensen, J. H.; Brandt, J., Development of a high-resolution nested air pollution model: the numerical approach, J. Comput. Phys., 179, 68-94 (2002) · Zbl 1001.92047
[49] Carmichael, G. R.; Sandu, A.; Chai, T.; Daescu, D. N.; Constantinescu, E. M.; Tang, Y., Predicting air quality: improvements through advanced methods to integrate models and measurements, J. Comput. Phys., 227, 3540-3571 (2008) · Zbl 1133.62373
[50] White, J. B.; Dongarra, J. J., High-performance high-resolution semi-Lagrangian tracer transport on a sphere, J. Comput. Phys., 230, 6778-6799 (2011) · Zbl 1229.86011
[51] Santillana, M.; Zhang, L.; Yantosca, R., Estimating numerical errors due to operator splitting in global atmospheric chemistry models: transport and chemistry, J. Comput. Phys., 305, 372-386 (2016) · Zbl 1349.80040
[52] Pudykiewicz, J. A., Application of adjoint tracer transport equations for evaluating source parameters, Atmos. Environ., 32, 3039-3050 (1998)
[53] Szmelter, J.; Smolarkiewicz, P. K., An edge-based unstructured mesh discretisation in geospherical framework, J. Comput. Phys., 229, 4980-4995 (2010) · Zbl 1346.76097
[54] Lauritzen, P. H.; Ullrich, P. A.; Jablonowski, C.; Bosler, P. A.; Calhoun, D.; Conley, A. J.; Enomoto, T.; Dong, L.; Dubey, S.; Guba, O., A standard test case suite for two-dimensional linear transport on the sphere: results from a collection of state-of-the-art schemes, Geosci. Model Dev., 7, 105-145 (2014)
[55] Lauritzen, P. H.; Thuburn, J., Evaluating advection/transport schemes using interrelated tracers, scatter plots and numerical mixing diagnostics, Q. J. R. Meteorol. Soc., 138, 906-918 (2012)
[56] Smolarkiewicz, P. K., Multidimensional positive definite advection transport algorithm: an overview, Int. J. Numer. Methods Fluids, 50, 1123-1144 (2006) · Zbl 1329.76215
[57] Sullivan, P. P.; Patton, E. G., The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation, J. Atmos. Sci., 68, 2395-2415 (2011)
[58] Pope, S. B., Turbulent Flows (2000) · Zbl 0966.76002
[59] Smolarkiewicz, P. K.; Szmelter, J.; Wyszogrodzki, A. A., An unstructured-mesh atmospheric model for nonhydrostatic dynamics, J. Comput. Phys., 254, 184-199 (2013) · Zbl 1349.86013
[60] Schmidt, H.; Schumann, U., Coherent structure of the convective boundary layer derived from large-eddy simulations, J. Fluid Mech., 200, 511-562 (1989) · Zbl 0659.76065
[61] Brown, D. L.; Minion, M. L., Performance of under-resolved two-dimensional incompressible flows simulations, J. Comput. Phys., 122, 165-183 (1995) · Zbl 0849.76043
[62] Minion, M. L.; Brown, D. L., Performance of under-resolved two-dimensional incompressible flows simulations II, J. Comput. Phys., 138, 734-765 (1997) · Zbl 0914.76063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.