×

zbMATH — the first resource for mathematics

Charged composite scalar dark matter. (English) Zbl 1383.83225
Summary: We consider a composite model where both the Higgs and a complex scalar \(\chi\), which is the dark matter (DM) candidate, arise as light pseudo Nambu-Goldstone bosons (pNGBs) from a strongly coupled sector with TeV scale confinement. The global symmetry structure is SO(7)/SO(6), and the DM is charged under an exact \( \mathrm{U}(1)_{\mathrm{DM}} \subset \mathrm{SO}(6)\) that ensures its stability. Depending on whether the \(\chi\) shift symmetry is respected or broken by the coupling of the top quark to the strong sector, the DM can be much lighter than the Higgs or have a weak-scale mass. Here we focus primarily on the latter possibility. We introduce the lowest-lying composite resonances and impose calculability of the scalar potential via generalized Weinberg sum rules. Compared to previous analyses of pNGB DM, the computation of the relic density is improved by fully accounting for the effects of the fermionic top partners. This plays a crucial role in relaxing the tension with the current DM direct detection constraints. The spectrum of resonances contains exotic top partners charged under the \( \mathrm{U}(1)_{\mathrm{DM}}\), whose LHC phenomenology is analyzed. We identify a region of parameters with \(f= 1.4\) TeV and 200 GeV \( \lesssim m_{\chi} \lesssim \) 400 GeV that satisfies all existing bounds. This DM candidate will be tested by XENON1T in the near future.

MSC:
83F05 Relativistic cosmology
85A40 Astrophysical cosmology
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bellazzini, B.; Csáki, C.; Serra, J., Composite higgses, Eur. Phys. J., C 74, 2766, (2014)
[2] Panico, G.; Wulzer, A., The composite Nambu-Goldstone Higgs, Lect. Notes Phys., 913, 1-316, (2016) · Zbl 1326.81006
[3] K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys.B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].
[4] Frigerio, M.; Pomarol, A.; Riva, F.; Urbano, A., Composite scalar dark matter, JHEP, 07, 015, (2012)
[5] Gripaios, B.; Pomarol, A.; Riva, F.; Serra, J., Beyond the minimal composite Higgs model, JHEP, 04, 070, (2009)
[6] Silveira, V.; Zee, A., Scalar phantoms, Phys. Lett., B 161, 136, (1985)
[7] J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev.D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].
[8] C.P. Burgess, M. Pospelov and T. ter Veldhuis, The minimal model of nonbaryonic dark matter: a singlet scalar, Nucl. Phys.B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].
[9] Marzocca, D.; Urbano, A., Composite dark matter and LHC interplay, JHEP, 07, 107, (2014)
[10] Weinberg, S., Precise relations between the spectra of vector and axial vector mesons, Phys. Rev. Lett., 18, 507, (1967)
[11] Marzocca, D.; Serone, M.; Shu, J., General composite Higgs models, JHEP, 08, 013, (2012)
[12] Pomarol, A.; Riva, F., The composite Higgs and light resonance connection, JHEP, 08, 135, (2012)
[13] R. Balkin, M. Ruhdorfer, E. Salvioni and A. Weiler, in preparation.
[14] XENON collaboration, E. Aprile et al., First dark matter search results from the XENON1T experiment, Phys. Rev. Lett.119 (2017) 181301 [arXiv:1705.06655] [INSPIRE].
[15] LUX collaboration, D.S. Akerib et al., Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett.118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].
[16] Chala, M.; Nardini, G.; Sobolev, I., Unified explanation for dark matter and electroweak baryogenesis with direct detection and gravitational wave signatures, Phys. Rev., D 94, (2016)
[17] M. Chala, \(h\) γγ excess and dark matter from composite Higgs models, JHEP01 (2013) 122 [arXiv:1210.6208] [INSPIRE].
[18] Barnard, J.; Gherghetta, T.; Ray, TS; Spray, A., The unnatural composite Higgs, JHEP, 01, 067, (2015)
[19] Wu, Y.; Zhang, B.; Ma, T.; Cacciapaglia, G., Composite dark matter and Higgs, JHEP, 11, 058, (2017)
[20] Ballesteros, G.; Carmona, A.; Chala, M., Exceptional composite dark matter, Eur. Phys. J., C 77, 468, (2017)
[21] S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1., Phys. Rev.177 (1969) 2239 [INSPIRE].
[22] C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2., Phys. Rev.177 (1969) 2247 [INSPIRE].
[23] Kaplan, DB, Flavor at SSC energies: a new mechanism for dynamically generated fermion masses, Nucl. Phys., B 365, 259, (1991)
[24] N. Yamatsu, Finite-dimensional Lie algebras and their representations for unified model building, arXiv:1511.08771 [INSPIRE].
[25] K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for\( Zb\overline{b} \), Phys. Lett.B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].
[26] CMS collaboration, Searches for invisible decays of the Higgs boson in pp collisions at\( \sqrt{s}=7 \)\(,\) 8 and 13 TeV, JHEP02 (2017) 135 [arXiv:1610.09218] [INSPIRE].
[27] Simone, A.; Matsedonskyi, O.; Rattazzi, R.; Wulzer, A., A first top partner hunter’s guide, JHEP, 04, 004, (2013) · Zbl 1342.81668
[28] Bando, M.; Kugo, T.; Yamawaki, K., Nonlinear realization and hidden local symmetries, Phys. Rept., 164, 217, (1988)
[29] Coleman, SR; Weinberg, EJ, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev., D 7, 1888, (1973)
[30] Grojean, C.; Matsedonskyi, O.; Panico, G., Light top partners and precision physics, JHEP, 10, 160, (2013)
[31] Csáki, C.; Ma, T.; Shu, J., The maximally symmetric composite Higgs, Phys. Rev. Lett., 119, 131803, (2017)
[32] Casas, JA; Cerdeño, DG; Moreno, JM; Quilis, J., Reopening the Higgs portal for single scalar dark matter, JHEP, 05, 036, (2017) · Zbl 1380.85013
[33] Matsedonskyi, O.; Panico, G.; Wulzer, A., Light top partners for a light composite Higgs, JHEP, 01, 164, (2013)
[34] Barbieri, R.; Giudice, GF, Upper bounds on supersymmetric particle masses, Nucl. Phys., B 306, 63, (1988)
[35] Panico, G.; Wulzer, A., The discrete composite Higgs model, JHEP, 09, 135, (2011) · Zbl 1301.81354
[36] Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys.594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
[37] Fonseca, N.; Zukanovich Funchal, R.; Lessa, A.; Lopez-Honorez, L., Dark matter constraints on composite Higgs models, JHEP, 06, 154, (2015)
[38] J.M. Cline, K. Kainulainen, P. Scott and C. Weniger, Update on scalar singlet dark matter, Phys. Rev.D 88 (2013) 055025 [Erratum ibid.D 92 (2015) 039906] [arXiv:1306.4710] [INSPIRE].
[39] A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun.185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
[40] Bélanger, G.; Boudjema, F.; Pukhov, A.; Semenov, A., Micromegas 3: a program for calculating dark matter observables, Comput. Phys. Commun., 185, 960, (2014)
[41] XENON collaboration, E. Aprile et al., Physics reach of the XENON1T dark matter experiment, JCAP04 (2016) 027 [arXiv:1512.07501] [INSPIRE].
[42] PAMELA collaboration, O. Adriani et al., PAMELA results on the cosmic-ray antiproton flux from 60 MeV to 180 GeV in kinetic energy, Phys. Rev. Lett.105 (2010) 121101 [arXiv:1007.0821] [INSPIRE].
[43] Evoli, C.; Gaggero, D.; Grasso, D., Secondary antiprotons as a galactic dark matter probe, JCAP, 12, 039, (2015)
[44] Cuoco, A.; Krämer, M.; Korsmeier, M., Novel dark matter constraints from antiprotons in light of AMS-02, Phys. Rev. Lett., 118, 191102, (2017)
[45] Cui, M-Y; Yuan, Q.; Tsai, Y-LS; Fan, Y-Z, Possible dark matter annihilation signal in the AMS-02 antiproton data, Phys. Rev. Lett., 118, 191101, (2017)
[46] AMS collaboration, M. Aguilar et al., Antiproton flux, antiproton-to-proton flux ratio and properties of elementary particle fluxes in primary cosmic rays measured with the Alpha Magnetic Spectrometer on the International Space Station, Phys. Rev. Lett.117 (2016) 091103 [INSPIRE].
[47] DES, Fermi-LAT collaboration, A. Albert et al., Searching for dark matter annihilation in recently discovered Milky Way satellites with Fermi-LAT, Astrophys. J.834 (2017) 110 [arXiv:1611.03184] [INSPIRE].
[48] Durieux, G.; Grojean, C.; Gu, J.; Wang, K., The leptonic future of the Higgs, JHEP, 09, 014, (2017)
[49] Panico, G.; Redi, M.; Tesi, A.; Wulzer, A., On the tuning and the mass of the composite Higgs, JHEP, 03, 051, (2013)
[50] R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/composite phenomenology simplified, JHEP05 (2007) 074 [hep-ph/0612180] [INSPIRE].
[51] Contino, R.; Servant, G., Discovering the top partners at the LHC using same-sign dilepton final states, JHEP, 06, 026, (2008)
[52] Mrazek, J.; Wulzer, A., A strong sector at the LHC: top partners in same-sign dileptons, Phys. Rev., D 81, (2010)
[53] Serra, J., Beyond the minimal top partner decay, JHEP, 09, 176, (2015)
[54] Anandakrishnan, A.; Collins, JH; Farina, M.; Kuflik, E.; Perelstein, M., Odd top partners at the LHC, Phys. Rev., D 93, (2016)
[55] Chala, M., Direct bounds on heavy toplike quarks with standard and exotic decays, Phys. Rev., D 96, (2017)
[56] CMS Collaboration, Search for single production of vector-like quarks decaying to a Z boson and a top or a bottom quark in proton-proton collisions at 13 TeV, CMS-PAS-B2G-17-007 (2017).
[57] ATLAS collaboration, Search for new phenomena in\( t\overline{t} \)final states with additional heavy-flavour jets in pp collisions at\( \sqrt{s}=13 \)TeV with the ATLAS detector, ATLAS-CONF-2016-104 (2016).
[58] CMS collaboration, Search for heavy vector-like quarks decaying to same-sign dileptons, CMS-PAS-B2G-16-019 (2016).
[59] Kraml, S.; Laa, U.; Panizzi, L.; Prager, H., scalar versus fermionic top partner interpretations of\( t\overline{t}+{E}_T^{\text{miss}} \)searches at the LHC, JHEP, 11, 107, (2016)
[60] G. Salam and A. Weiler, Collider reach, http://collider-reach.web.cern.ch/collider-reach/.
[61] CMS collaboration, Search for new phenomena with the MT2 variable in the all-hadronic final state produced in proton-proton collisions at\( \sqrt{s}=13 \)TeV, Eur. Phys. J.C 77 (2017) 710 [arXiv:1705.04650] [INSPIRE].
[62] McDermott, SD; Yu, H-B; Zurek, KM, Turning off the lights: how dark is dark matter?, Phys. Rev., D 83, (2011)
[63] Chuzhoy, L.; Kolb, EW, Reopening the window on charged dark matter, JCAP, 07, 014, (2009)
[64] Ackerman, L.; Buckley, MR; Carroll, SM; Kamionkowski, M., Dark matter and dark radiation, Phys. Rev., D 79, (2009)
[65] J.L. Feng, M. Kaplinghat, H. Tu and H.-B. Yu, Hidden charged dark matter, JCAP07 (2009)004 [arXiv:0905.3039] [INSPIRE].
[66] Feng, JL; Tu, H.; Yu, H-B, Thermal relics in hidden sectors, JCAP, 10, 043, (2008)
[67] Agrawal, P.; Cyr-Racine, F-Y; Randall, L.; Scholtz, J., Make dark matter charged again, JCAP, 05, 022, (2017)
[68] Gondolo, P.; Gelmini, G., Cosmic abundances of stable particles: improved analysis, Nucl. Phys., B 360, 145, (1991)
[69] Azatov, A.; Galloway, J., Light custodians and Higgs physics in composite models, Phys. Rev., D 85, (2012)
[70] Montull, M.; Riva, F.; Salvioni, E.; Torre, R., Higgs couplings in composite models, Phys. Rev., D 88, (2013)
[71] M. Drees and M. Nojiri, Neutralino-nucleon scattering revisited, Phys. Rev.D 48 (1993) 3483 [hep-ph/9307208] [INSPIRE].
[72] Alarcon, JM; Martin Camalich, J.; Oller, JA, The chiral representation of the πN scattering amplitude and the pion-nucleon sigma term, Phys. Rev., D 85, (2012)
[73] Hoferichter, M.; Ruiz de Elvira, J.; Kubis, B.; Meißner, UG, High-precision determination of the pion-nucleon σ term from roy-Steiner equations, Phys. Rev. Lett., 115, (2015)
[74] Junnarkar, P.; Walker-Loud, A., Scalar strange content of the nucleon from lattice QCD, Phys. Rev., D 87, 114510, (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.