×

zbMATH — the first resource for mathematics

Optimality conditions (in Pontryagin form). (English) Zbl 1412.49048
Tonon, Daniela (ed.) et al., Optimal control: novel directions and applications. Cham: Springer. Lect. Notes Math. 2180, 1-125 (2017).
Authors’ abstract: This chapter aims at being a friendly presentation of various results related to optimality conditions of optimal control problems. Different classes of systems are considered, such as equations with time delays and/or state constraints, dynamics affine with respect to the control variables, problems governed by partial differential equations and systems arising from classical mechanics, among others.
For the entire collection see [Zbl 1378.49001].

MSC:
49K20 Optimality conditions for problems involving partial differential equations
49J20 Existence theories for optimal control problems involving partial differential equations
35Q93 PDEs in connection with control and optimization
Software:
BNDSCO; Bocop
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] 1. Abraham, R., Marsden, J.E.: Foundations of Mechanics. Advanced Book Program. Benjamin/Cummings, Reading (1978). Second edition, revised and enlarged, with the assistance of Tudor Raţiu and Richard Cushman
[2] 2. Adams, R.A., Fournier, J.: Sobolev Spaces, vol. 140. Academic, New York (2003) · Zbl 1098.46001
[3] 3. Álvarez, F., Bolte, J., Bonnans, J.F., Silva, F.J.: Asymptotic expansions for interior penalty solutions of control constrained linear-quadratic problems. Math. Program. 135 (1-2, Ser. A), 473-507 (2012) · Zbl 1252.49055
[4] 4. Aronna, M.S.: Second order necessary and sufficient optimality conditions for singular solutions of partially-affine control problems (2017). Discrete Contin. Dyn. Sys. Ser. S. To appear · Zbl 1409.49003
[5] 5. Aronna, M.S., Bonnans, J.F., Dmitruk, A.V., Lotito, P.A.: Quadratic order conditions for bang-singular extremals. Numer. Algebra Control Optim. 2 (3), 511-546 (2012). Special issue in honor of Helmut Maurer · Zbl 1252.49028
[6] 6. Aronna, M.S., Bonnans, J.F., Martinon, P.: A shooting algorithm for optimal control problems with singular arcs. J. Optim. Theory Appl. 158 (2), 419-459 (2013) · Zbl 1275.49045
[7] 7. Aronna, M.S., Bonnans, J.F., Goh, B.S.: Second order analysis of control-affine problems with scalar state constraint. Math. Program. 160 (1), 115-147 (2016) · Zbl 1352.49020
[8] 8. Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Modern Birkhäuser Classics. Birkhäuser, Boston (2009)
[9] 9. Bambi, M., Fabbri, G., Gozzi, F.: Optimal policy and consumption smoothing effects in the time-to-build AK model. Econ. Theory 50 (3), 635-669 (2012) · Zbl 1246.91082
[10] 10. Banks, H.T., Manitius, A.: Application of abstract variational theory to hereditary systems-a survey. IEEE Trans. Autom. Control AC-19 , 524-533 (1974) · Zbl 0288.49004
[11] 11. Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhauser, Boston (1997) · Zbl 0890.49011
[12] 12. Bayen, T., Silva, F.J.: Weak and strong minima: from calculus of variation toward PDE optimization. In: 1st IFAC Workshop on Control of Systems Modeled by Partial Differential Equations (CPDE 2013), vol. 1-1, pp. 150-154 (2013)
[13] 13. Bayen, T., Silva, F.J.: Second order analysis for strong solutions in the optimal control of parabolic equations. SIAM J. Control Optim. 54 (2), 819-844 (2016) · Zbl 1355.49003
[14] 14. Bayen, T., Bonnans, J.F., Silva, F.J.: Characterization of local quadratic growth for strong minima in the optimal control of semi-linear elliptic equations. Trans. Am. Math. Soc. 366-4 , 2063-2087 (2014) · Zbl 1297.49004
[15] 15. Bell, D.J., Jacobson, D.H.: Singular Optimal Control Problems. Academic, New York (1975) · Zbl 0338.49006
[16] 16. Bensoussan, A., Da Prato, G., Delfour, M.C., Mitter, S.K.: Representation and Control of Infinite Dimensional Systems. Systems & Control: Foundations & Applications, 2nd edn. Birkhäuser, Boston (2007) · Zbl 1117.93002
[17] 17. Berkovitz, L.B., Medhin, N.G.: Nonlinear Optimal Control Theory. CRC, Boca Raton (2013)
[18] 18. Bettiol, P., Frankowska, H.: Normality of the maximum principle for nonconvex constrained Bolza problems. J. Differ. Equ. 243 (2), 256-269 (2007) · Zbl 1161.49021
[19] 19. Bettiol, P., Bressan, A., Vinter, R.B.: On trajectories satisfying a state constraint: \( W\)\^{ 1,1} estimates and counterexamples. SIAM J. Control Optim. 48 (7), 4664-4679 (2010) · Zbl 1217.34025
[20] 20. Betts, J.T.: Survey of numerical methods for trajectory optimization. J. Guid. Control Dyn. 21 (2), 193-207 (1998) · Zbl 1158.49303
[21] 21. Biegler, L.T.: Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes. MOS-SIAM Series on Optimization, vol. 10. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2010)
[22] 22. Boccia, A.: Optimization based control of nonlinear constrained systems. Ph.D. Thesis, Imperial College London (2014)
[23] 23. Boccia, A., Falugi, P., Maurer, H., Vinter, R.B.: Free time optimal control problems with time delays. In: Proceedings of the 52nd IEEE Conference on Decision and Control, CDC 2013, December 10-13, 2013, Firenze, pp. 520-525 (2013)
[24] 24. Bonnans, J.F.: Second order analysis for control constrained optimal control problems of semilinear elliptic systems. Appl. Math. Optim. 38-3 , 303-325 (1998) · Zbl 0917.49020
[25] 25. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000) · Zbl 0966.49001
[26] 26. Bonnans, J.F., Silva., F.J.: Asymptotic expansion for the solution of a penalized control constrained semilinear elliptic problem. SIAM J. Control Optim. 49 , 2494-2517 (2011) · Zbl 1323.49002
[27] 27. Bonnans, J.F., Silva, F.J.: First and second order necessary conditions for stochastic optimal control problems. Appl. Math. Optim. 65 (3), 403-439 (2012) · Zbl 1244.49045
[28] 28. Bonnans, J.F., Grelard, V., Martinon, P.: Bocop, the optimal control solver, open source toolbox for optimal control problems (2011).
[29] 29. Bressan, A., Rampazzo, F.: Impulsive control systems with commutative vector fields. J. Optim. Theory Appl. 71 (1), 67-83 (1991) · Zbl 0793.49014
[30] 30. Bryson, A.E., Ho, Y.C.: Applied Optimal Control. Hemisphere, New York (1975)
[31] 31. Bulirsch, R.: Die Mehrzielmethode zur numerischen Losung von nichtlinearen Randwertproblemen und Aufgaben der optimalen Steuerung. Report der Carl-Cranz Gesellschaft (1971)
[32] 32. Campos, C.M.: High order variational integrators: a polynomial approach. In: Casas, F., Martínez, V. (eds.) Advances in Differential Equations and Applications, SEMA SIMAI Springer Series, vol. 4, pp. 3-49. Springer International Publishing, Cham (2014)
[33] 33. Campos, C.M., Junge, O., Ober-Blöbaum, S.: Higher order variational time discretization of optimal control problems. In: 20th International Symposium on Mathematical Theory of Networks and Systems, Melbourne (2012)
[34] 34. Campos, C.M., Ober-Blöbaum, S., Trélat, E.: High order variational integrators in the optimal control of mechanical systems. Discret. Cont. Dyn. Syst. Ser. A. 35 (9), 31 (2015)
[35] 35. Cannarsa, P., Frankowska, H.: Local regularity of the value function in optimal control. Syst. Control Lett. 62 (9), 791-794 (2013) · Zbl 1280.49056
[36] 36. Cannarsa, P., Frankowska, H.: From pointwise to local regularity for solutions of Hamilton-Jacobi equations. Calc. Var. Partial Differ. Equ. 49 (3-4), 1061-1074 (2014) · Zbl 1288.35144
[37] 37. Cannarsa, P., Sinestrari, C.: Convexity properties of the minimum time function. Calc. Var. Partial Differ. Equ. 3 (3), 273-298 (1995) · Zbl 0836.49013
[38] 38. Cannarsa, P., Sinestrari, C.: On a class of nonlinear time optimal control problems. Discret. Continuous Dyn. Syst. 1 (2), 285-300 (1995) · Zbl 0867.49016
[39] 39. Cannarsa, P., Sinestrari, C.: Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control. Progress in Nonlinear Differential Equations and Their Applications, vol. 58. Birkhäuser, Boston (2004) · Zbl 1095.49003
[40] 40. Cannarsa, P., Pignotti, C., Sinestrari, C.: Semiconcavity for optimal control problems with exit time. Discret. Continuous Dyn. Syst. 6 (4), 975-997 (2000) · Zbl 1009.49024
[41] 41. Cannarsa, P., Frankowska, H., Scarinci, T.: Second-order sensitivity relations and regularity of the value function for Mayer’s problem in optimal control. SIAM J. Control Optim. 53 (6), 3642-3672 (2015) · Zbl 1335.49040
[42] 42. Caroff, N., Frankowska, H.: Conjugate points and shocks in nonlinear optimal control. Trans. Am. Math. Soc. 348 (8), 3133-3153 (1996) · Zbl 0924.49016
[43] 43. Casas, E., Tröeltzsch, F.: Second order necessary optimality conditions for some state-constrained control problems of semilinear elliptic equations. Appl. Math. Optim. 39 , 211-228 (1999) · Zbl 0921.49013
[44] 44. Casas, E., Tröeltzsch, F.: Second order necessary and sufficient optimality conditions for optimization problems and applications to control theory. SIAM J. Optim. 13 , 406-431 (2002) · Zbl 1052.49022
[45] 45. Casas, E., Tröltzsch, F.: Recent advances in the analysis of pointwise state-constrained elliptic optimal control problems. ESAIM Control Optim. Calc. Var. 16 (3), 581-600 (2010) · Zbl 1201.49004
[46] 46. Casas, E., Tröltzsch, F.: Second order analysis for optimal control problems: improving results expected from abstract theory. SIAM J. Optim. 22 (1), 261-279 (2012) · Zbl 1259.90162
[47] 47. Casas, E., Tröltzsch, F.: Second order optimality conditions and their role in PDE control. Jahresber. Dtsch. Math. Ver 117 (1), 3-44 (2015) · Zbl 1311.49002
[48] 48. Casas, E., Tröeltzsch, F., Unger, A.: Second order sufficient optimality conditions for some state-constrained control problems of semilinear elliptic equations. SIAM J. Control Optim. 38 , 369-1391 (2000) · Zbl 0962.49016
[49] 49. Cernea, A., Frankowska, H.: A connection between the maximum principle and dynamic programming for constrained control problems. SIAM J. Control Optim. 44 (2), 673-703 (2005) · Zbl 1085.49032
[50] 50. Cernea, A., Georgescu, C.: Necessary optimality conditions for differential-difference inclusions with state constraints. J. Math. Anal. Appl. 334 (1), 43-53 (2007) · Zbl 1124.49018
[51] 51. Clarke, F.: Optimization and Nonsmooth Analysis. Classics in Applied Mathematics, vol. 5. SIAM, Philadelphia (1990) · Zbl 0696.49002
[52] 52. Clarke, F.: Necessary conditions in dynamic optimization. Mem. Am. Math. Soc. 173 (816), x+113 (2005) · Zbl 1093.49017
[53] 53. Clarke, F.: Functional Analysis, Calculus of Variations and Optimal Control, vol. 264. Springer, Berlin (2013) · Zbl 1277.49001
[54] 54. Clarke, F.H., Vinter, R.B.: Optimal multiprocesses. SIAM J. Control Optim. 27 (5), 1072-1091 (1989) · Zbl 0684.49007
[55] 55. Clarke, F.H., Watkins, G.G.: Necessary conditions, controllability and the value function for differential-difference inclusions. Nonlinear Anal. 10 (11), 1155-1179 (1986) · Zbl 0609.49013
[56] 56. Clarke, F.H., Wolenski, P.R.: The sensitivity of optimal control problems to time delay. SIAM J. Control Optim. 29 (5), 1176-1215 (1991) · Zbl 0769.49022
[57] 57. Clarke, F.H., Wolenski, P.R.: Necessary conditions for functional-differential inclusions. Appl. Math. Optim. 34 (1), 51-78 (1996) · Zbl 0877.49022
[58] 58. De los Reyes, J.C.: Numerical PDE-Constrained Optimization. Springer Briefs in Optimization. Springer, Berlin (2015) · Zbl 1312.65100
[59] 59. Demengel, F., Demengel, G., Erné, R.: Functional Spaces for the Theory of Elliptic Partial Differential Equations. Universitext. Springer, Berlin (2012) · Zbl 1239.46001
[60] 60. Dmitruk, A.V.: Quadratic conditions for a weak minimum for singular regimes in optimal control problems. Soviet Math. Doklady 18 (2), 418-422 (1977) · Zbl 0385.49008
[61] 61. Dmitruk, A.V.: Quadratic order conditions for a Pontryagin minimum in an optimal control problem linear in the control. Math. USSR Izv. 28 , 275-303 (1987) · Zbl 0682.49020
[62] 62. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings. A View from Variational Analysis. Springer Series in Operations Research and Financial Engineering, 2nd edn. Springer, New York (2014) · Zbl 1337.26003
[63] 63. Dubovitskii, A.Y., Milyutin, A.A.: Extremal problems with constraints. URSS Comput. Math. Math. Phys 5, 1-80 (1965) · Zbl 0158.33504
[64] 64. Evans, L.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998) · Zbl 0902.35002
[65] 65. Fattorini, H.O.: Infinite-Dimensional Optimization and Control Theory. Encyclopedia of Mathematics and its Applications, vol. 62. Cambridge University Press, Cambridge (1999) · Zbl 0931.49001
[66] 66. Fleming, W.H., Rishel, R.: Deterministic and Stochastic Optimal Control. Applications of Mathematics, vol. 1. Springer, New York (1975) · Zbl 0323.49001
[67] 67. Fontes, F.A.C.C., Frankowska, H.: Normality and nondegeneracy for optimal control problems with state constraints. J. Optim. Theory Appl. 166 (1), 115-136 (2015) · Zbl 1322.49035
[68] 68. Fontes, F.A.C.C., Lopes, S.O.: Normal forms of necessary conditions for dynamic optimization problems with pathwise inequality constraints. J. Math. Anal. Appl. 399 (1), 27-37 (2013) · Zbl 1282.49017
[69] 69. Frankowska, H.: Normality of the maximum principle for absolutely continuous solutions to Bolza problems under state constraints. Control Cybernet. 38 (4B), 1327-1340 (2009) · Zbl 1237.49026
[70] 70. Frankowska, H., Mazzola, M.: Optimal synthesis and normality of the maximum principle for optimal control problems with pure state constraints. In: 2011 9th IEEE International Conference on Control and Automation (ICCA), pp. 945-950. IEEE, Piscataway (2011)
[71] 71. Frankowska, H., Mazzola, M.: Discontinuous solutions of Hamilton-Jacobi-Bellman equation under state constraints. Calc. Var. Partial Differ. Equ. 46 (3-4), 725-747 (2013) · Zbl 1263.49025
[72] 72. Frankowska, H., Mazzola, M.: On relations of the adjoint state to the value function for optimal control problems with state constraints. NoDEA Nonlinear Differ. Equ. Appl. 20 (2), 361-383 (2013) · Zbl 1269.49035
[73] 73. Frankowska, H., Nguyen, L.V.: Local regularity of the minimum time function. J. Optim. Theory Appl. 164 (1), 68-91 (2015) · Zbl 1311.49094
[74] 74. Frankowska, H., Rampazzo, F.: Filippov’s and Filippov-Ważewski’s theorems on closed domains. J. Differ. Equ. 161 (2), 449-478 (2000) · Zbl 0956.34012
[75] 75. Frankowska, H., Tonon, D.: The Goh necessary optimality conditions for the Mayer problem with control constraints. In: 2013 IEEE 52nd Annual Conference on Decision and Control (CDC), pp. 538-543 (2013) · Zbl 1285.49013
[76] 76. Frankowska, H., Tonon, D.: Inward pointing trajectories, normality of the maximum principle and the non occurrence of the Lavrentieff phenomenon in optimal control under state constraints. J. Conv. Anal. 20 (4), 1147-1180 (2013) · Zbl 1281.49016
[77] 77. Frankowska, H., Tonon, D.: Pointwise second-order necessary optimality conditions for the Mayer problem with control constraints. SIAM J. Control Optim. 51 (5), 3814-3843 (2013) · Zbl 1285.49013
[78] 78. Fuller, A.T.: Relay control systems optimized for various performance criteria. In: Proceedings of the IFAC Congress, Moscow, pp. 510-519. Butterworth, London (1961)
[79] 79. Gabasov, R., Kirillova, F.M.: High order necessary conditions for optimality. SIAM J. Control 10 , 127-168 (1972) · Zbl 0236.49005
[80] 80. Gamkrelidze, R.V.: Optimal control processes for bounded phase coordinates. Izv. Akad. Nauk SSSR. Ser. Mat. 24 , 315-356 (1960)
[81] 81. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1983) · Zbl 0361.35003
[82] 82. Goddard, R.H.: A Method of Reaching Extreme Altitudes. Smithsonian Miscellaneous Collections, vol. 71(2). Smithsonian Institution, City of Washington (1919)
[83] 83. Goh, B.S.: Necessary conditions for singular extremals involving multiple control variables. SIAM J. Control 4 (4), 716-731 (1966) · Zbl 0161.29004
[84] 84. Goh, B.S.: The second variation for the singular Bolza problem. SIAM J. Control 4 (2), 309-325 (1966) · Zbl 0146.11906
[85] 85. Göllmann, L., Maurer, H.: Theory and applications of optimal control problems with multiple time-delays. J. Ind. Manag. Optim. 10 (2), 413-441 (2014)
[86] 86. Göllmann, L., Kern, D., Maurer, H.: Optimal control problems with delays in state and control variables subject to mixed control-state constraints. Optim. Control Appl. Methods 30 (4), 341-365 (2009)
[87] 87. Goodman, T.R., Lance, G.N.: The numerical integration of two-point boundary value problems. Math. Tables Aids Comput. 10 , 82-86 (1956) · Zbl 0071.34006
[88] 88. Guinn, T.: Reduction of delayed optimal control problems to nondelayed problems. J. Optim. Theory Appl. 18 (3), 371-377 (1976) · Zbl 0304.49017
[89] 89. Hager, W.W.: Runge-Kutta methods in optimal control and the transformed adjoint system. Numer. Math. 87 (2), 247-282 (2000) · Zbl 0991.49020
[90] 90. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations. Springer Series in Computational Mathematics, vol. 31. Springer, Heidelberg (2010). Reprint of the second (2006) edition · Zbl 1094.65125
[91] 91. Haraux, A.: How to differentiate the projection on a convex set in Hilbert space. some applications to variational inequalities. J. Math. Soc. Jpn. 29 , 615-631 (1977) · Zbl 0387.46022
[92] 92. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Springer, New York (2008) · Zbl 1167.49001
[93] 93. Hoehener, D.: Variational approach to second-order optimality conditions for control problems with pure state constraints. SIAM J. Control 50 (3), 1139-1173 (2012) · Zbl 1246.49016
[94] 94. Ioffe, A.: Euler-Lagrange and Hamiltonian formalisms in dynamic optimization. Trans. Am. Math. Soc. 349 (7), 2871-2900 (1997) · Zbl 0876.49024
[95] 95. Ioffe, A.D., Tihomirov, V.M.: Theory of Extremal Problems. North-Holland, Amsterdam (1979) · Zbl 0407.90051
[96] 96. Ito, K., Kunisch, K.: Lagrange multiplier approach to variational problems and applications. Advances in Design and Control. Society for Industrial and Applied Mathematics, Philadelphia (2008) · Zbl 1156.49002
[97] 97. Kharatishvili, G.L., Tadumadze, T.A.: Formulas for variations of solutions to a differential equation with retarded arguments and a discontinuous initial condition. Mat. Sb. 196 (8), 49-74 (2005)
[98] 98. Lasserre, J.B., Henrion, D., Prieur, C., Trélat, E.: Nonlinear optimal control via occupation measures and LMI-relaxations. SIAM J. Control Optim. 47 (4), 1643-1666 (2008) · Zbl 1188.90193
[99] 99. Levitin, E.S., Milyutin, A.A., Osmolovskii, N.P.: Higher order conditions for local minima in problems with constraints. Usp. Mat. Nauk 33 (6(204)), 85-148, 272 (1978). Engl. Trans., Russ. Math. Surv. 33 (6), 97-168 (1978)
[100] 100. Li, X., Yong, J.: Optimal Control Theory for Infinite Dimensional Systems. Systems and Control: Foundations and Applications. Birkhauser, Basel (1994)
[101] 101. Lions, J.L.: Contrôle optimal de systèmes gouvernés par des equations aux dérivées partielles. Dunod, Paris (1968) · Zbl 0179.41801
[102] 102. Liu, C., Loxton, R., Teo, K.L.: A computational method for solving time-delay optimal control problems with free terminal time. Syst. Control Lett. 72 , 53-60 (2014) · Zbl 1302.49042
[103] 103. Lopes, S.O., Fontes, F.A.C.C.: On stronger forms of first-order necessary conditions of optimality for state-constrained control problems. Int. J. Pure Appl. Math. 49 (4), 459-466 (2008) · Zbl 1165.49022
[104] 104. Lopes, S.O., Fontes, F.A.C.C., de Pinho, M.R.: On constraint qualifications for nondegenerate necessary conditions of optimality applied to optimal control problems. Discret. Contin. Dyn. Syst. 29 (2), 559-575 (2011) · Zbl 1209.49022
[105] 105. Malanowski, K.: Two-norm approach in stability and sensitivity analysis of optimization and optimal control problems. Adv. Math. Sci. Appl. 2 (2), 397-443 (1993) · Zbl 0791.49015
[106] 106. Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta Numer. 10 , 357-514 (2001) · Zbl 1123.37327
[107] 107. Maurer, H.: Numerical solution of singular control problems using multiple shooting techniques. J. Optim. Theory Appl. 18 (2), 235-257 (1976) · Zbl 0302.65063
[108] 108. Michiels, W., Niculescu, S.I.: Stability and Stabilization of Time-Delay Systems. An Eigenvalue-Based Approach. Advances in Design and Control, vol. 12. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2007) · Zbl 1140.93026
[109] 109. Mignot, F.: Contrôle dans les inéquations variationnelles. J. Funct. Anal. 22 , 25-39 (1976) · Zbl 0364.49003
[110] 110. Milyutin, A., Osmolovskii, N.: Calculus of Variations and Optimal Control. Systems and Control: Foundations and Applications. AMS, Providence (1998)
[111] 111. Mordukhovich, B.S., Trubnik, R.: Stability of discrete approximations and necessary optimality conditions for delay-differential inclusions. Ann. Oper. Res. 101 , 149-170 (2001). Optimization with data perturbations, II · Zbl 1006.49016
[112] 112. Morrison, D.D., Riley, J.D., Zancanaro, J.F.: Multiple shooting method for two-point boundary value problems. Commun. ACM 5 , 613-614 (1962) · Zbl 0106.31903
[113] 113. Neittaanmaki, P., Sprekels, J., Tiba, D.: Optimization of Elliptic Systems. Springer, New York (2006) · Zbl 1106.49002
[114] 114. Nguyen, L.V.: A note on optimality conditions for optimal exit time problems. Math. Control Relat. Fields 5 (2), 291-303 (2015) · Zbl 1326.49029
[115] 115. Ober-Blöbaum, S.: Galerkin variational integrators and modified symplectic Runge-Kutta methods. IMA J. Numer. Anal. 37 (1), 375-406 (2017) · Zbl 1433.65134
[116] 116. Ober-Blöbaum, S., Junge, O., Marsden, J.: Discrete mechanics and optimal control: an analysis. ESAIM Control Optim. Calc. Var. 17 (2), 322-352 (2011) · Zbl 1357.49120
[117] 117. Oberle, H.J.: Numerical computation of singular control problems with application to optimal heating and cooling by solar energy. Appl. Math. Optim. 5 (4), 297-314 (1979) · Zbl 0428.49007
[118] 118. Oberle, H.J., Grimm, W.: BNDSCO - a program for the numerical solution of the optimal control problems. Technical Report 515-89/22, Institute for Flight Systems Dynamics, DLR, Oberpfaffenhofen, Germany (1989)
[119] 119. Oğuztöreli, M.N.: Time-Lag Control Systems. Mathematics in Science and Engineering, vol. 24. Academic, New York/London (1966)
[120] 120. Osmolovskii, N.P., Maurer, H.: Applications to Regular and Bang-Bang Control: Second-Order Necessary and Sufficient Optimality Conditions in Calculus of Variations and Optimal Control. Advances in Design and Control, vol. 24. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2012) · Zbl 1263.49002
[121] 121. Palladino, M., Vinter, R.B.: Minimizers that are not also relaxed minimizers. SIAM J. Control Optim. 52 (4), 2164-2179 (2014) · Zbl 1307.49016
[122] 122. Palladino, M., Vinter, R.B.: When are minimizing controls also minimizing relaxed controls? Discret. Continuous Dyn. Syst. 35 (9), 4573-4592 (2015) · Zbl 1367.49008
[123] 123. Pesch, H.J.: A practical guide to the solution of real-life optimal control problems. Control Cybernet. 23 (1-2), 7-60 (1994). Parametric optimization · Zbl 0811.49029
[124] 124. Pignotti, C.: Rectifiability results for singular and conjugate points of optimal exit time problems. J. Math. Anal. Appl. 270 (2), 681-708 (2002) · Zbl 1008.49020
[125] 125. Pontryagin, L., Boltyanski, V., Gamkrelidze, R., Michtchenko, E.: The Mathematical Theory of Optimal Processes. Wiley Interscience, New York (1962)
[126] 126. Rampazzo, F., Vinter, R.B.: A theorem on existence of neighbouring trajectories satisfying a state constraint, with applications to optimal control. IMA J. Math. Control Inform. 16 (4), 335-351 (1999) · Zbl 1050.49002
[127] 127. Robbins, H.M.: A generalized Legendre-Clebsch condition for the singular case of optimal control. IBM J. Res. Dev. 11 , 361-372 (1967) · Zbl 0153.41202
[128] 128. Ross, I.M., Fahroo, F.: Legendre pseudospectral approximations of optimal control problems. In: New Trends in Nonlinear Dynamics and Control, and Their applications. Lecture Notes in Control and Information Sciences, vol. 295, pp. 327-342. Springer, Berlin (2003) · Zbl 1203.49025
[129] 129. Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian problems, Applied Mathematics and Mathematical Computation, vol. 7. Chapman & Hall, London (1994) · Zbl 0816.65042
[130] 130. Schättler, H., Ledzewicz, U.: Geometric Optimal Control: Theory, Methods and Examples, vol. 38. Springer Science & Business Media, New York (2012) · Zbl 1276.49002
[131] 131. Seywald, H., Cliff, E.M.: Goddard problem in presence of a dynamic pressure limit. J. Guid. Control Dyn. 16 (4), 776-781 (1993) · Zbl 0779.70020
[132] 132. Silva, F.J.: Second order analysis for the optimal control of parabolic equations under control and final state constraints. Set-Valued Var. Anal. 24 (1), 57-81 (2016) · Zbl 1334.49068
[133] 133. Soner, H.M.: Optimal control with state-space constraint. I. SIAM J. Control Optim. 24 (3), 552-561 (1986) · Zbl 0597.49023
[134] 134. Suris, Y.B.: Hamiltonian methods of Runge-Kutta type and their variational interpretation. Mat. Model. 2 (4), 78-87 (1990) · Zbl 0972.70500
[135] 135. Tröltzsch, F.: Optimal Control of Partial Differential Equations - Theory, Methods and Applications. Graduate Studies in Mathematics, vol. 112. American Mathematical Society, Providence (2010)
[136] 136. Ulbrich, M.: Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces. MOS-SIAM Series on Optimization, vol. 11. Society for Industrial and Applied Mathematics (SIAM)/Mathematical Optimization Society, Philadelphia (2011) · Zbl 1235.49001
[137] 137. Ulbrich, M., Ulbrich, S.: Primal-Dual Interior point methods for PDE-constrained optimization. Math. Program. 117 , 435-485 (2009) · Zbl 1171.90018
[138] 138. Vinter, R.B.: Optimal Control. Birkhäuser, Boston (2000)
[139] 139. Vinter, R.B.: The Hamiltonian inclusion for nonconvex velocity sets. SIAM J. Control Optim. 52 (2), 1237-1250 (2014) · Zbl 1304.49045
[140] 140. Vinter, R.B., Kwong, R.H.: The infinite time quadratic control problem for linear systems with state and control delays: an evolution equation approach. SIAM J. Control Optim. 19 (1), 139-153 (1981) · Zbl 0465.93043
[141] 141. Vossen, G.: Switching time optimization for bang-bang and singular controls. J. Optim. Theory Appl. 144 (2), 409-429 (2010) · Zbl 1185.49022
[142] 142. Warga, J.: Necessary conditions for minimum in relaxed variational problems. J. Math. Anal. Appl. 4 , 129-145 (1962) · Zbl 0102.31802
[143] 143. Warga, J.: Relaxed variational problems. J. Math. Anal. Appl. 4 , 111-128 (1962) · Zbl 0102.31801
[144] 144. Warga, J.: Normal control problems have no minimizing strictly original solutions. Bull. Am. Math. Soc. 77 , 625-628 (1971) · Zbl 0237.49004
[145] 145. Warga, J.: Optimal Control of Differential and Functional Equations. Academic, New York (1972) · Zbl 0253.49001
[146] 146. Warga, J.: Controllability, extremality, and abnormality in nonsmooth optimal control. J. Optim. Theory Appl. 41 (1), 239-260 (1983) · Zbl 0497.49033
[147] 147. Warga, J.: Optimization and controllability without differentiability assumptions. SIAM J. Control Optim. 21 (6), 837-855 (1983) · Zbl 0526.49026
[148] 148. Weiser, M., Schiela, A.: Function space interior point methods for PDE constrained optimization. PAMM 4 (1) , 43-46 (2004) · Zbl 1354.49052
[149] 149. Weiser, M., Gänzler, T., Schiela, A.: A control reduced primal interior point method for a class of control constrained optimal control problems. Comput. Optim. Appl. 41 (1) , 127-145 (2008) · Zbl 1190.90278
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.