zbMATH — the first resource for mathematics

Principal asymptotics in the problem on the Andronov-Hopf bifurcation and their applications. (English. Russian original) Zbl 1391.34076
Differ. Equ. 53, No. 12, 1578-1594 (2017); translation from Differ. Uravn. 53, No. 12, 1627-1642 (2017).
The Andronov-Hopf bifurcation is an important problem in the theory of nonlinear oscillations. In this paper, the authors propose new asymptotic formulas for studying the Andronov-Hopf bifurcation in terms of the original equations. The formulas are useful both for approximate bifurcation studies and in the stability analysis of the corresponding solutions. The approach permits one to study not only problems on bifurcations of codimension one but also some problems on bifurcations of codimension two. This paper proposes a new approach to analyze the bifurcation of a limit cycle in systems with homogeneous nonlinearities.

34C23 Bifurcation theory for ordinary differential equations
34E05 Asymptotic expansions of solutions to ordinary differential equations
Full Text: DOI
[1] Marsden, J.E. and McCracken, M., The Hopf Bifurcation and Its Applications, New York: Springer-Verlag, 1976. Translated under the title Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Moscow: Mir, 1980. · Zbl 0545.58002
[2] Hassard, B.D., Kazarinoff, N.D., and Wang, Y.-H., Theory and Applications of the Hopf Bifurcation, Cambridge: Cambridge Univ. Press, 1980. Translated under the title Teoriya i prilozheniya bifurkatsii rozhdeniya tsikla, Moscow: Mir, 1985. · Zbl 0662.34001
[3] Kuznetsov, Yu.A., Elements of Applied Bifurcation Theory, New York: Springer-Verlag, 1998. · Zbl 0914.58025
[4] Shil’nikov, L.P., Shil’nikov, A.L., Turaev, D.V., and Chua, L.O., Methods of Qualitative Theory in Nonlinear Dynamics, Singapore: World Sci., 2001, part 2.
[5] Arnol’d, V.I., Geometricheskie metody v teorii obyknovennykh differentsial’nykh uravnenii (Geometric Methods for Ordinary Differential Equations), Moscow; Izhevsk: Inst. Komp. Issled., 2000.
[6] Guckenheimer, J. and Holmes, P.J., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, New York: Springer-Verlag, 1983. · Zbl 0515.34001
[7] Bryuno, A.D., The analytic form of differential equations, Tr. Mosk. Mat. Obs., 25, 119-262, (1971) · Zbl 0263.34003
[8] Chow, S.-N., Li, C., and Wang, D., Normal Forms and Bifurcation of Planar Vector Fields, Cambridge: Cambridge Univ. Press, 1994. · Zbl 0804.34041
[9] Rachinskii, D.; Schneider, K.R., Dynamic Hopf bifurcations generated by nonlinear terms, J. Differential Equations, 210, 65-86, (2005) · Zbl 1070.34065
[10] Krasnosel’skii, M.A.; Kuznetsov, N.A.; Yumagulov, M.G., Parameter functionability and asymptotic behavior of cycles in hopf’s bifurcation, Autom. Remote Control, 57, 1548-1553, (1996) · Zbl 0923.34039
[11] Krasnosel’skii, M.A.; Kuznetsov, N.A.; Yumagulov, M.G., An operator method for investigating the stability of cycles in Hopf bifurcation, Autom. Remote Control, 57, 1701-1708, (1996) · Zbl 0923.34040
[12] Vyshinskii, A.A.; Ibragimova, L.S.; Murtazina, S.A.; Yumagulov, M.G., An operator method for approximate investigation of a regular bifurcation in multiparameter dynamical systems, Ufim. Mat. Zh., 2, 3-26, (2010) · Zbl 1240.37066
[13] Kozyakin, V.S.; Krasnosel’skii, M.A., The method of parameter functionalization in the Hopf bifurcation problem, Nonlinear Anal. Theory Methods Appl., 11, 149-161, (1987) · Zbl 0661.34036
[14] Krasnosel’skii, M.A., Vainikko, G.M., Zabreiko, P.P., et al., Priblizhennoe reshenie operatornykh uravnenii (Approximate Solution of Operator Equations), Moscow: Nauka, 1969.
[15] Krasnosel’skii, M.A.; Yumagulov, M.G., The parameter functionalization method in the eigenvalue problem, Dokl. Math., 59, 204-206, (1999) · Zbl 0973.47014
[16] Kuznetsov, N.A.; Yumagulov, M.G.; Sharafutdinov, I.V., The investigation algorithm of stability of periodic oscillations in the problem for the Andronov-Hopf bifurcation, Autom. Remote Control, 69, 2033-2038, (2008) · Zbl 1165.34347
[17] Krasnosel’skii, A.M.; Mennicken, R.; Rachinskii, D.I., Cycle stability for Hopf bifurcation generated by sublinear terms, Math. Nachr., 233-234, 171-195, (2002) · Zbl 1010.34031
[18] Diamond, P.; Rachinskii, D.; Yumagulov, M., Stability of large cycles in a nonsmooth problem with Hopf bifurcation at infinity, Nonlinear Anal. Theory Methods Appl., 42, 1017-1031, (2000) · Zbl 0963.34034
[19] Krasnosel’skii, A.; Rachinskii, D., Hopf bifurcations from infinity, generated by bounded nonlinear terms, Funct. Differ. Equ., 6, 357-374, (1999) · Zbl 1057.34033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.