×

On \(\lambda\)-pseudo bi-starlike and \(\lambda\)-pseudo bi-convex functions with respect to symmetrical points. (English) Zbl 1388.30016

Summary: In this paper, defining new interesting classes, \(\lambda\)-pseudo bi-starlike functions with respect to symmetrical points and \(\lambda\)-pseudo bi-convex functions with respect to symmetrical points in the open unit disk \(\mathbb{U}\), we obtain upper bounds for the initial coefficients of functions belonging to these new classes.

MSC:

30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
30C50 Coefficient problems for univalent and multivalent functions of one complex variable
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] G. Akιn and S. Sümer Eker, Coefficient estimates for a certain class of analytic and bi-univalent functions defined by fractional derivative, C. R. Acad. Sci. Sér. I 352 (2014), 1005-1010. · Zbl 1302.30011
[2] K. O. Babalola, On λ-pseudo-starlike functions, Journal of Classical Analysis, 3 (2) (2013), 137-147.
[3] D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, in: S. M. Mazhar, A. Hamoui, N. S. Faour (Eds.), Mathematical Analysis and Its Applications, Kuwait; February 18-21, 1985, in: KFAS Proceedings Series, Vol. 3, Pergamon Press, Elsevier Science Limited, Oxford, 1988, pp. 53-60; See also Studia Univ. Babeş-Bolyai Math. 31 (2) (1986), 70-77. · Zbl 0703.30014
[4] M. Çaglar, E. Deniz and H.M. Srivastava, Second Hankel determinant for certain subclasses of bi-univalent functions, Turkish J.Math., 41 (2017), 694-706.
[5] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
[6] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63-68. · Zbl 0158.07802
[7] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan, 11 (1) (1959), 72-75. · Zbl 0085.29602
[8] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188-1192. · Zbl 1201.30020
[9] H. M. Srivastava and D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egyptian Math. Soc. 23, (2015) 242-246. · Zbl 1326.30019
[10] H. M. Srivastava, S. Sümer Eker and R. M. Ali, Coefficient Bounds for a certain class of analytic and bi-univalent functions, Filomat 29 (2015), 1839-1845. · Zbl 1458.30035
[11] H. M. Srivastava, S. Gaboury and F. Ghanim, Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Mathematica Scientia, 36, Issue 3, (2016), 863-871. · Zbl 1363.30035
[12] H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Africa Mathematica, 28, (2017) 693-706. · Zbl 1370.30009
[13] H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Universitatis Apulensis, 41, (2015), 153-164. · Zbl 1349.30081
[14] H. M. Srivastava, S. B. Joshi, S. S. Joshi, H. Pawar,. Coefficient Estimates for Certain Subclasses of Meromorphically Bi-Univalent Functions. Palestine Journal of Mathematics, 5, (2016), 250-258. · Zbl 1346.30011
[15] H. M. Srivastava, S. Sivasubramanian and R. Sivakumar, Initial Coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Mathematical Journal 7 (2) (2014), 1-10. · Zbl 1304.30026
[16] T. S. Taha, Topics in Univalent Function Theory, Ph.D. Thesis, University of London, 1981.
[17] H. Tang, H.M. Srivastava, S. Sivasubramanian and P. Gurusamy, The Fekete-Szegö Functional Problems For Some Subclasses of m-Fold Symmetric Bi-Univalent Functions, Journal of Mathematical Inequalities, 10 (4), (2016) 1063-1092. · Zbl 1357.30012
[18] Q.-H. Xu, Y.-C. Gui and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), 990-994. · Zbl 1244.30033
[19] Q.-H. Xu, H.-G. Xiao and H. M. Srivastava, A certain general subclass of analytic and biunivalent functions and associated Coefficient estimate problems, Appl. Math. Comput. 218 (2012), 1146-11465. · Zbl 1284.30009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.