zbMATH — the first resource for mathematics

Semiparametric model average prediction in panel data analysis. (English) Zbl 1388.62111
Authors’ abstract: Forecasting in economic data analysis is dominated by linear prediction methods where the predicted values are calculated from a fitted linear regression model. With multiple predictor variables, multivariate nonparametric models were proposed in the literature. However, empirical studies indicate the prediction performance of multi-dimensional nonparametric models may be unsatisfactory. We propose a new semiparametric model average prediction (SMAP) approach to analyse panel data and investigate its prediction performance with numerical examples. Estimation of individual covariate effect only requires univariate smoothing and thus may be more stable than previous multivariate smoothing approaches. The estimation of optimal weight parameters incorporates the longitudinal correlation and the asymptotic properties of the estimated results are carefully studied in this paper.
62G08 Nonparametric regression and quantile regression
62F12 Asymptotic properties of parametric estimators
62M20 Inference from stochastic processes and prediction
62G20 Asymptotic properties of nonparametric inference
Full Text: DOI
[1] Aneiros, G.; Vieu, P., Sparse nonparametric model for regression with functional covariate, Journal of Nonparametric Statistics, 28, 839-859, (2016) · Zbl 1348.62131
[2] Baltagi, B. H.; Song, S.H.; Jung, B.C., The unbalanced nested error component regression model, Journal of Econometrics, 101, 2, 357-381, (2001) · Zbl 0966.62043
[3] Buckland, S.T.; Burnham, K.P.; Augustin, N.H., Model selection: an integral part of inference, Biometrics, 53, 603-618, (1997) · Zbl 0885.62118
[4] Cao, H.; Li, J.; Fine, J.P., On last observation carried forward and asynchronous longitudinal regression analysis, Electronic Journal of Statistics, 10, 1155-1180, (2016) · Zbl 1349.62544
[5] Chatfield, C., Time-Series Forecasting, (2001), Chapman and Hall/CRC, Boca Raton, FL
[6] Chen, X.; Zou, C.; Cook, R.D., Coordinate-independent sparse sufficient dimension reduction and variable selection, The Annals of Statistics, 38, 3696-3723, (2010) · Zbl 1204.62107
[7] Cheng, M.Y.; Zhang, W.; Chen, L.H., Statistical estimation in generalized multiparameter likelihood models, Journal of the American Statistical Association, 104, 1179-1191, (2009) · Zbl 1388.62160
[8] Cheng, M.Y.; Toshio, H.; Li, J.; Peng, H., Nonparametric independence screening and structure identification for ultra-high dimensional longitudinal data, Annals of Statistics, 42, 1819-1849, (2014) · Zbl 1305.62169
[9] Cheng, M.Y.; Honda, T.; Li, J., Efficient estimation in semivarying coefficient models for longitudinal/clustered data, The Annals of Statistics, 44, 5, 1988-2017, (2016) · Zbl 1349.62128
[10] Claeskens, G.; Carroll, R.J., An asymptotic theory for model selection inference in general semiparametric problems, Biometrika, 94, 249-265, (2007) · Zbl 1132.62032
[11] Clements, M.P.; Hendry, D.F., Forecasting Economic Time Series, (1998), Cambridge University Press, Cambridge
[12] De Gooijer, J.G.; Gannoun, A., Nonparametric conditional predictive regions for time series, Computational Statistics and Data Analysis, 33, 259-275, (2000) · Zbl 0990.62083
[13] Fan, J.; Gijbels, I., Local Polynomial Modelling and its Applications, (1996), Chapman and Hall, London · Zbl 0873.62037
[14] Fan, J.; Li, R., Variable selection via nonconcave penalized likelihood and its oracle properties, Journal of the American Statistical Association, 96, 1348-1360, (2001) · Zbl 1073.62547
[15] Fan, J.; Peng, H., Nonconcave penalized likelihood with a diverging number of parameters, Annals of Statistics, 32, 928-961, (2004) · Zbl 1092.62031
[16] Fan, J.; Yao, Q., Nonlinear Time Series: Nonparametric and Parametric Methods, (2005), Springer, New York
[17] Fan, J.; Feng, Y.; Song, R., Nonparametric independence screening in sparse ultra-high dimensional additive models, Journal of the American Statistical Association, 106, 544-557, (2011) · Zbl 1232.62064
[18] Gao, Y.; Zhang, X.Y.; Wang, S.Y.; Zou, G.H., Model averaging based on leave-subject-out cross-validation, Journal of Econometrics, 192, 139-151, (2016) · Zbl 1419.62084
[19] Hall, P.; Müller, H.G.; Wang, J.L., Properties of principal component methods for functional and longitudinal data analysis, The Annals of Statistics, 34, 1493-1517, (2006) · Zbl 1113.62073
[20] Hansen, B.E., Least squares model averaging, Econometrica, 75, 1175-1189, (2007) · Zbl 1133.91051
[21] Hjort, N.L.; Claeskens, G., Frequentist model average estimators, Journal of the American Statistical Association, 98, 879-899, (2003) · Zbl 1047.62003
[22] Huang, Z.; Li, J.; Nott, D.; Feng, L.; Ng, T.P.; Wong, T.Y., Bayesian estimation of varying-coefficient models with missing data, with application to the Singapore longitudinal aging study, Journal of Statistical Computation and Simulation, 85, 2364-2377, (2015)
[23] Jolliffe, I., Principal Component Analysis, (1986), Springer-Verlag, New York · Zbl 1011.62064
[24] Li, Y.; Hsing, T., Uniform convergence rates for nonparametric regression and principal component analysis in functional/longitudinal data, The Annals of Statistics, 38, 3321-3351, (2010) · Zbl 1204.62067
[25] Li, J.; Wong, W.K., Selection of covariance patterns for longitudinal data in semi-parametric models, Statistical Methods in Medical Research, 19, 183-196, (2009)
[26] Li, J.; Xia, Y.; Palta, M.; Shankar, A., Impact of unknown covariance structures in semiparametric models for longitudinal data: an application to wisconsin diabetes data, Computational Statistics and Data Analysis, 53, 4186-4197, (2009) · Zbl 05689170
[27] Li, D.; Linton, O.; Lu, Z., A flexible semiparametric forecasting model for time series, Journal of Econometrics, 187, 345-357, (2015) · Zbl 1337.62271
[28] Li, J.; Huang, C.; Zhu, H., A functional varying-coefficient single index model for functional response data, Journal of the American Statistical Association, 112, 1169-1181, (2017)
[29] Liang, H.; Zou, G.H.; Wan, A.T.K.; Zhang, X.Y., Optimal weight choice for frequentist model average estimators, Journal of the American Statistical Association, 106, 1053-1066, (2011) · Zbl 1229.62090
[30] Ma, Y.; Zhu, L., A review on dimension reduction, International Statistical Review, 81, 134-150, (2013)
[31] Mack, Y.P.; Silverman, B.W., Weak and strong uniform consistency of kernel regression estimates, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 61, 405-415, (1982) · Zbl 0495.62046
[32] Matzner-Lober, E.; Gannoun, A.; De Gooijer, J.G., Nonparametric forecasting: A comparison of three kernel-based methods, Communications in Statistics - Theory and Methods, 27, 1593-1617, (1998) · Zbl 0930.62037
[33] Meier, L.; van de Geer, S.; Bulhmann, P., High-dimensional additive modelling, Annals of Statistics, 37, 3779-3821, (2009) · Zbl 1360.62186
[34] Ni, L.; Fang, F., Entropy-based model-free feature screening for ultrahigh-dimensional multiclass classification, Journal of Nonparametric Statistics, 28, 515-530, (2016) · Zbl 1349.62279
[35] 1997‘Using Rank Order as an Instrumental Variable: An Application of the Return of Schooling’, CES Discussion paper. 97.10, K. U. Leuven
[36] Wan, A.T.K.; Zhang, X.; Zou, G., Least squares model averaging by Mallows criterion, Journal of Econometrics, 156, 277-283, (2010) · Zbl 1431.62291
[37] Wang, L.; Li, H.; Huang, J.Z., Variable selection in nonparametric varying-coefficient models for analysis of repeated measurements, Journal of the American Statistical Association, 103, 1556-1569, (2008) · Zbl 1286.62034
[38] Xu, M.; Li, J.; Chen, Y., Varying coefficient functional autoregressive model with application to the US treasuries, Journal of Multivariate Analysis, 159, 168-183, (2017) · Zbl 1397.62154
[39] Yang, Y., Adaptive regression by mixing, Journal of the American Statistical Association, 96, 574-588, (2001) · Zbl 1018.62033
[40] Yang, Y., Regression with multiple candidate models: selecting or mixing?, Statistica Sinica, 13, 783-809, (2003) · Zbl 1028.62021
[41] Yao, Q.; Tong, H., Quantifying the inference of initial values on nonlinear prediction, Journal of Royal Statistical Society, Series B, 56, 701-725, (1994) · Zbl 0799.62099
[42] Zhang, W., Identification of the constant components in generalised semivarying coefficient models by cross-validation, Statistica Sinica, 21, 1913-1929, (2011) · Zbl 1225.62060
[43] Zhang, X.; Liang, H., Focused information criterion and model averaging for generalized additive partial linear models, Annals of Statistics, 39, 174-200, (2011) · Zbl 1209.62088
[44] Zhang, X.; Wan, A.T.K.; Zhou, S.Z., Focused information criteria, model selection and model averaging in a tobit model with a non-zero threshold, Journal of Business and Economic Statistics, 30, 132-142, (2012)
[45] Zhu, H.; Li, R.; Kong, L., Multivariate varying coefficient model for functional responses, The Annals of Statistics, 40, 2634-2666, (2012) · Zbl 1373.62169
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.