×

zbMATH — the first resource for mathematics

Verification of the Jones unknot conjecture up to 22 crossings. (English) Zbl 1386.57016

MSC:
57M25 Knots and links in the \(3\)-sphere (MSC2010)
57M27 Invariants of knots and \(3\)-manifolds (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Adams, C., The Knot Book, An Elementary Introduction to the Mathematical Theory of Knots, (2004), AMS · Zbl 1065.57003
[2] A. Champanerkar and I. Kofman, A survey on the Turaev Genus of Knots, arXiv:1406.1945. · Zbl 1306.57007
[3] Anstee, R. P.; Przytycki, J. H.; Rolfsen, D., Knot polynomials and generalized mutation, Topology Appl., 32, 237-249, (1989) · Zbl 0638.57006
[4] D. Bar-Natan, Fast Khovanov Homology Computations, arXiv:0606318.
[5] Bigelow, S., Does the Jones polynomial detect the unknot?, J. Knot Theory Ramifications, 11, 493-505, (2002) · Zbl 1003.57017
[6] Boost, C++ libraries, http://www.boost.org.
[7] Boyer, J. M.; Myrvold, W. J., On the edge: simplified O(n) planarity testing by edge addition, J. Graph Theory Appl., 8, 241-273, (2004) · Zbl 1086.05067
[8] Brinkmann, G.; Greenberg, S.; Greenhill, C.; McKay, B. D.; Thomas, R.; Wollan, P., Generation of simple quadrangulations of the sphere, Discrete Math., 305, 33-54, (2005) · Zbl 1078.05023
[9] Brinkmann, G.; McKay, B. D., Fast generation of planar graphs, MATCH Commun. Math. Comput. Chem., 58, 323-357, (2007) · Zbl 1164.68025
[10] Cheng, Z. Y.; Gao, H. Z., Mutation on knots and whitney’s 2-isomorphism theorem, Acta Math. Sinica, Engl. Ser., 29, 1219-1230, (2013) · Zbl 1270.57018
[11] Conway, J. H.; Leech, J., Computational Problems in Abstract Algebra, An enumeration of knots and links and some of their algebraic properties, 329-358, (1970), Pergamon Press, Oxford, England
[12] Dasbach, O. T.; Hougardy, S., Does the Jones polynomial detect unknottedness?, Exp. Math., 6, 51-56, (1997) · Zbl 0883.57006
[13] J. D’Aurizio, Sum of Catalan numbers, http://math.stackexchange.com/questions/ 903593/sum-of-catalan-numbers.
[14] Eliahou, S.; Kauffman, L. H.; Thistlethwaite, M. B., Infinite families of links with trivial Jones polynomial, Topology, 42, 155-169, (2001) · Zbl 1013.57005
[15] Ganzell, S., Local moves and restrictions on the Jones polynomial, J. Knot Theory Ramifications, 23, 1450011, (2014) · Zbl 1290.57006
[16] Hoste, J.; Thistlethwaite, M.; Weeks, J., The first 1,701,935 knots, Math. Intell., 20, 4, 33-48, (1998) · Zbl 0916.57008
[17] Ito, T., A kernel of a braid group representation yields a knot with trivial knot polynomials, Math. Z., 280, 347-353, (2015) · Zbl 1323.57009
[18] Jaeger, F.; Vertigan, D. L.; Welsh, D. J. A., On the computational complexity of the Jones and Tutte polynomials, Math. Proc. Cambridge Phil. Soc., 108, 35-53, (1990) · Zbl 0747.57006
[19] Jones, V. F. R., Mathematics: Frontiers and Perspectives, Ten problems, 79-91, (2000), American Mathematical Society, Providence · Zbl 0969.57001
[20] Jones, V. F. R.; Rolfsen, D. P. O., A theorem regarding 4-braids and the \(V = 1\) problem, Proceedings of the Conference on Quantum Topology (Manhattan, KS, 1993), 127-135, (1994), World Scientific · Zbl 0900.20066
[21] Kauffman, L. H., State models and the Jones polynomial, Topology, 26, 395-407, (1987) · Zbl 0622.57004
[22] Kauffman, L. H.; Lambropoulou, S., On the classification of rational tangles, Adv. Appl. Math., 33, 2, 199-237, (2004) · Zbl 1057.57006
[23] Knot Atlas, katlas.org/wiki/The_Determinant_and_the_Signature.
[24] I. Kofman and Y. Rong, private communication.
[25] Kredel, H., Evaluation of a Java computer algebra system, Comput. Math., 5081, 121-138, (2008) · Zbl 1166.68377
[26] P. B. Kronheimer and T. S. Mrowka, Khovanov homology is an unknot-detector, arXiv:1005.4346. · Zbl 1241.57017
[27] M. Lackenby, The crossing number of composite knots, http://arXiv.org/pdf/0805.4706.pdf. · Zbl 1190.57003
[28] Meringer, M., Fast generation of regular graphs and construction of cages, J. Graph Theory, 30, 137-146, (1999) · Zbl 0918.05062
[29] Tables of various graph enumerations, including those in this work up 18 vertices, appear in http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html.
[30] Murasugi, K., Jones polynomials and classical conjectures in knot theory, Topology, 26, 187-194, (1987) · Zbl 0628.57004
[31] Przytycki, J. H., Fundamentals of kauffman bracket skein modules, Kobe Math. J., 16, 1, 45-66, (1999) · Zbl 0947.57017
[32] Przytycki, J. H., Ideas from Graph Theory and Statistical Mechanics, 34, Search for different links with the same jones’ type polynomials, 121-148, (1995), Banach Center Publications, Warszawa · Zbl 0848.57011
[33] Rolfsen, D.; Bozhüyük, M. E., Topics in Knot Theory, The quest for a knot with trivial Jones polynomial: diagram surgery and the Temperley-Lieb algebra, 195-210, (1993), Kluwer Academic Publications, Dordrecht · Zbl 0833.57002
[34] SnapPy, program for studying the topology and geometry of 3-manifolds, www.math.uic.edu/t3m/SnapPy.
[35] Thistlethwaite, M. B., A spanning tree expansion of the Jones polynomial, Topology, 26, 297-309, (1987) · Zbl 0622.57003
[36] Thistlethwaite, M. B., Links with trivial Jones polynomial, J. Knot Theory Ramifications, 10, 641-643, (2001) · Zbl 1001.57022
[37] M. B. Thistlethwaite, private communication.
[38] Yamada, S., How to find knots with unit Jones polynomials, Proc. Conf. Dedicated to Prof. K. Murasugi for his 70th birthday (Toronto, July 1999), 355-361, (2000), Springer
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.