Equations des ondes semi-linéaires. II: Contrôle des singularités et caustiques non linéaires. (Semilinear wave equations. II: Control of nonlinear singularities and caustics). (French) Zbl 0686.35015

[See also the following review.]
If u(x,t) is a solution of the semilinear wave equation \(\square u=P(t,x,u)\) in \({\mathbb{R}}^{d+1}\), which belongs to \(C_ 0({\mathbb{R}}_ t;H^ s)\), \(s>d/s\), and with Cauchy data conormal with respect to some analytic hypersurface, one study the wave front set of u. In particular, one obtains the location of the singularities in the case of the swallowtail caustic.
Reviewer: G.Lebeau


35B40 Asymptotic behavior of solutions to PDEs
35L70 Second-order nonlinear hyperbolic equations
35L15 Initial value problems for second-order hyperbolic equations


Zbl 0686.35016
Full Text: DOI EuDML


[1] Beals, M.: Self spreading and strength of singularities for solutions to semi-linear wave equations. Ann. Math.118, 187-214 (1983) · Zbl 0522.35064 · doi:10.2307/2006959
[2] Beals, M.: Propagation of smoothness for non linear second order strictly hyperbolic differential equations. Proc. Symp. Pure Math.43, 21-44 (1985) · Zbl 0575.35062
[3] Bony, J-M.: Calcul symbolique et propagation des singularit?s pour les ?quations aux d?riv?es partielles non lin?aires. Ann. Sci. Ec. Norm. Super., IV. Ser.14, 209-246 (1981)
[4] Bony, J-M.: Interaction des singularit?s pour les ?quations aux d?riv?es partielles non in?aires, S?m. Goulaouic-Meyer-Schwartz, 1981/82, n02 et Interaction pour Klein Gordon, S?m. Goulaouic-Meyer-Schwartz, 1 1983/84, n0 10
[5] Bony, J-M.: Singularit?s de probl?me de Cauchy hyperbolique non lin?aire. Advances in Microlocal Analysis, Castel Vecchio 1985, Nato Asi. Series. Garnir, H.G. (Ed.) Dordrecht/Holland: Reidel Pub. (1986)
[6] Chemin, J-Y.: Interaction contr?l?e dans les E.D.P. non lin?aires strictement hyperboliques. Bull. Soc. Math. France (a para?tre) (1988)
[7] Delort, J-M., Lebeau, G.: DistributionsI-Lagrangiennes. J. Math. Pures Appl.67, 39-84 (1988) · Zbl 0659.46042
[8] G?rard, P.: Solutions conormales analytiques C.P.D.E.13, 345-377 (1988) · Zbl 0639.35054 · doi:10.1080/03605308808820545
[9] Hardt, R.: Semi-algebraic local triviality in semi-algebraic mappings. Am. J. Math.102, 291-302 (1980) · Zbl 0465.14012 · doi:10.2307/2374240
[10] Hardt, R.: Some analytic bounds for subanalytic sets. Geometric control theory. (Progress in Math.). Boston: Birkh?user 1983 · Zbl 0547.32003
[11] Kashiwara, M., Kawai, T.: On the holnomic systems of microdifferential equations, III. Publ. Res. Inst. Math. Sci.17, 813-979 (1981) · Zbl 0505.58033 · doi:10.2977/prims/1195184396
[12] Kashiwara, M., Schapira, P.: Vari?t? caract?ristique de la restriction d’un module diff?rentiel. Journ.. ?Equations Deriv. Partielles?, St. Jean-De-Monts (1981)
[13] Kashiwara, M., Schapira, P.: Microlocal study of sheaves. Ast?risque128 (1985) · Zbl 0589.32019
[14] Laurent, Y.: Pr?publication Universit? Paris-Sud, 1988: pb de Cauchy 2-microdiff?rentiel et cycles evanescents
[15] Lebeau, G.: Deuxi?me microlocalisation ? croissance. S?minaire Goulaouic-Meyer-Schwartz, 1982/83, n0 15
[16] Lebeau, G.: Probl?me de Cauchy semi-lin?aire en 3 dimensions d’espace. Un r?sultat de finitude. J. Funct. Anal.78, 185-196 (1988) · Zbl 0648.35057 · doi:10.1016/0022-1236(88)90138-3
[17] Melrose, R., Ritter, N.: Interaction of progressing waves for semi-linear wave equations. Ann. Math.121, 187-213 (1985) · Zbl 0575.35063 · doi:10.2307/1971196
[18] Melrose, R.: Conormal rings and semi-linear wave equations. Advances in microlocal analysis, Castel Vecchio 1985, Nato Asi. Series. Garnir, H.G. (Ed.). Dordrecht/Holland: Reidel Pub. (1986)
[19] Melrose, R.: Semi-linear waves with cusp singularities. Journ. ?Equations Deriv. Partielles?, St. Jean-De-Monts10 (1987)
[20] Sj?strand, J.: Singularit?s analytiques microlocales. Ast?risque95 (1982)
[21] Teissier, B.: Sur la triangulation des morphismes sous-analytiques. Pr?publication D.M.I., Ec. Norm. Sup. Paris (1987)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.