Chen, Mufa; Li, Shaofu Coupling methods for multidimensional diffusion processes. (English) Zbl 0686.60083 Ann. Probab. 17, No. 1, 151-177 (1989). Probability measures \(P^{x,y}\), \(x,y\in R^ d\), on \(C([0,\infty);R^{2d})\) are considered, such that the canonical process \(Z(t)=(X(t),Y(t))\), \(t\geq 0\), is the \(P^{x,y}\)-diffusion process with the matrix of diffusion coefficients \(a(x,y)=\left( \begin{matrix} a(x)\\ c(x,y)^*\end{matrix} \begin{matrix} c(x,y)\\ a(y)\end{matrix} \right)\) and the vector of drift coefficients \(b(x,y)=(b(x)\quad \quad b(y))'\). Criteria are found for the success of coupling, i.e. \[ P^{x,y}\{T<\infty \}=1\quad and\quad P^{x,y}\{X(t)=Y(t),\quad t\geq T\}=1, \] where \(T=\inf \{t\geq 0:\) \(X(t)=Y(t)\}\). Some examples and applications are also studied. Reviewer: B.Grigelionis Cited in 65 Documents MSC: 60J60 Diffusion processes 60J65 Brownian motion 60H10 Stochastic ordinary differential equations (aspects of stochastic analysis) 60J45 Probabilistic potential theory 60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.) Keywords:multidimensional diffusion processes; coupling PDF BibTeX XML Cite \textit{M. Chen} and \textit{S. Li}, Ann. Probab. 17, No. 1, 151--177 (1989; Zbl 0686.60083) Full Text: DOI