Rokhlin, V. Rapid solution of integral equations of scattering theory in two dimensions. (English) Zbl 0686.65079 J. Comput. Phys. 86, No. 2, 414-439 (1990). The author considers the two-dimensional problem of scattering by a homogeneous obstacle. He points out that the problem, originally expressed in terms of the Helmholtz equation, can be reformulated in integral equation form. He discusses the error in the truncation of infinite series of Bessel functions and develops an iterative algorithm for solving the integral equation system. He indicates that, when these are n nodes, the amount of work required is of order \(n^{4/3}\). This is an improvement on previous methods where the order is \(n^ 2\). Reviewer: Ll.G.Chambers Cited in 1 ReviewCited in 144 Documents MSC: 65N35 Spectral, collocation and related methods for boundary value problems involving PDEs 65R20 Numerical methods for integral equations 35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation 35C15 Integral representations of solutions to PDEs 45E10 Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type) 76Q05 Hydro- and aero-acoustics Keywords:rapid solution; two-dimensional scattering; Helmholtz equation; series of Bessel functions; iterative algorithm × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Abramowitz, M.; Stegun, I., Handbook of Mathematical Functions, (Applied Math. Series (1964), National Bureau of Standards: National Bureau of Standards Washington, DC) · Zbl 0515.33001 [2] Achenbach, J. D., Wave Propagation in Elastic Solids (1980), North-Holland: North-Holland New York · Zbl 0268.73005 [3] Atkinson, K. E., Fredholm Integral Equations of the Second Kind (1976), Siam: Siam Philadelphia · Zbl 0155.47404 [4] Brigham, E. O., The Fast Fourier Transform (1974), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0375.65052 [5] Colton, D.; Kress, R., Integral Equations Methods in Scattering Theory (1983), Wiley: Wiley New York · Zbl 0522.35001 [6] Courant, R.; Hilbert, D., Methods of Mathematical Physics (1966), Interscience: Interscience New York · Zbl 0729.00007 [7] Dahlquist, G.; Work, A., Numerical Methods (1974), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ [8] Dunford, N.; Schwartz, J. T., Linear Operators (1971), Interscience: Interscience New York · Zbl 0243.47001 [9] Duff, I. S., Recent developments in the solution of large sparse linear equations, (Duff, I. S., Proceedings, INRIA Fourth International Symposium on Computing Methods in Applied Science and Engineering. Proceedings, INRIA Fourth International Symposium on Computing Methods in Applied Science and Engineering, Versailles, 1979 (1979), Springer-Verlag: Springer-Verlag New York/Berlin) · Zbl 0437.65024 [10] Dunkin, J. W., Bull. Seismol. Soc. Amer., 55, 335 (1965) [11] Eisenstat, S. C.; Elman, H. C.; Schultz, M. H., SIAM J. Num. Anal., 20, 345 (1983) · Zbl 0524.65019 [12] Elliott, D. F.; Rao, K. R., Fast Transforms (1982), Academic Press.,: Academic Press., New York · Zbl 0562.65097 [13] Engquist, B.; Majda, A., Math. Comput., 31, 139 (1973) [14] Eringen, A. C.; Suhubi, E. S., Elastodynamics (1975), Academic Press: Academic Press New York · Zbl 0344.73036 [15] Kato, T., Perturbation Theory for Linear Operators (1976), Springer Verlag: Springer Verlag New York · Zbl 0342.47009 [16] Koshliakov, N. S.; Smirnov, M. M.; Gliner, E. B., Differential Equations of Mathematical Physics (1964), North-Holland: North-Holland Amsterdam · Zbl 0115.30701 [17] Kress, R.; Roach, G. F., J. Math. Phys., 19, 1433 (1978) · Zbl 0433.35017 [18] Rokhlin, V., Wave Motion, 5, 257 (1983) · Zbl 0522.73022 [19] Rokhlin, V., Comput. Math. Appl., 11, 667 (1985) · Zbl 0608.65074 [20] Rokhlin, V., J. Comput. Phys., 60, 1987 (1985) [21] Rokhlin, V., (Technical Report 441 (1985), Dept. of Computer Science, Yale University), (unpublished) [22] Watson, G. N., A Treatise on The Theory of Bessel Functions (1980), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0174.36202 [23] Winter, R., SIAM J. Numer. Anal., 17, 14 (1980) · Zbl 0447.65021 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.